Generation of Multiplexed Engineered, Off-the-Shelf CAR T Cells Uniformly Carrying Multiple Anti-Tumor Modalities to Prevent Tumor Relapse

嵌合抗原受体 重编程 诱导多能干细胞 生物 癌症研究 T细胞 计算机科学 细胞 免疫学 免疫系统 遗传学 基因 胚胎干细胞
作者
Chia‐Wei Chang,Eigen Peralta,Gloria Hsia,Bo Yang,Wen-I Yeh,Raedun Clarke,Mili Mandal,Tom Lee,Mochtar Pribadi,Ramzey Abujarour,Yi‐Shin Lai,David Robbins,Matthew Denholtz,Sandeep Kothapally Hanok,Emily Driver,Emily Carron,Natalie Navarrete,May Sumi,Amit Mehta,Philip Chu,Jason ORourke,Alma Gutierrez,Eric Sung,Suzanna Gasparian,Angela Gentile,Alec Witty,Amanda D. Yzaguirre,Samuel LaBarge,Cokey Nguyen,Bahram Valamehr
出处
期刊:Blood [American Society of Hematology]
卷期号:136 (Supplement 1): 11-11 被引量:1
标识
DOI:10.1182/blood-2020-138930
摘要

The development of chimeric antigen receptor (CAR) T cell therapeutics is widely recognized as a significant advancement for the treatment of cancer. However, several obstacles currently impede the broad use of CAR T cells, including the inherent process variability, cost of manufacturing, the absolute requirement for precise and uniform genetic editing in the allogeneic setting, and the challenge to keep pace with clonal heterogeneity and tumor growth. Utilizing our previously described induced pluripotent stem cell (iPSC)-derived T (iT) cell platform, we illustrate here the unique ability to address these challenges by creating a consistent CAR iT cell product that can be repeatedly manufactured in large quantities from a renewable iPSC master cell bank that has been engineered to mitigate the occurrence of graft versus host disease (GvHD), antigen escape and tumor relapse. Utilizing our proprietary cellular reprogramming and engineering platform and stage-specific T cell differentiation protocol, we demonstrate that iPSC can be engineered at the single cell level to generate a fully characterized clonal iPSC line, which can then be accessed routinely to yield CAR iT cells in a highly scalable manufacturing process (>100,000 fold expansion). Through bi-allelic targeting of a CAR into the T cell receptor alpha constant (TRAC) region, we generated CAR iT cells with uniform CAR expression (99.0 ± 0.5% CAR+) and complete elimination of T cell receptor (TCR) expression to avoid GvHD in the allogeneic setting. We elected to utilize the 1XX-CAR configuration, which has demonstrated superior anti-tumor performance relative to other CAR designs and when introduced into iT cells displayed enhanced antigen specificity (% specific cytotoxicity at E:T=10:1, antigen positive group: 86.4 ± 7.8; antigen null group: 8.9 ± 3.5). To enhance persistence without reliance on exogenous cytokine support, we engineered signaling-fusion complexes, including IL-7 receptor fusion (RF), into iPSC and studied its impact on iT phenotype, persistence, and efficacy. In vitro, IL-7RF clones demonstrated improved anti-tumor activity in a serial antigen dependent tumor challenge assay (Day 10, relative tumor counts, IL-7RF group: 1.95 ± 0.01; control group: 57.56 ± 4.55, P<0.000001). In a preclinical in vivo model of disseminated leukemia, IL-7RF clones demonstrate enhanced tumor growth inhibition (Day 34, Log [BLI], IL-7RF group: 6.68 ± 1.93; control group: 9.99 ± 0.23, P=0.0143). We next investigated a unique strategy to incorporate multi-antigen targeting potential into anti-CD19 1XX CAR iT cells with the addition of a high-affinity non-cleavable CD16 (hnCD16) Fc receptor. The combination of hnCD16 with anti-CD19 1XX CAR culminated in iT cells capable of multi-antigen specificity through combinatorial use with monoclonal antibodies to tackle antigen escape. Utilizing CD19 negative leukemia cells as targets, superior antibody-dependent cellular cytotoxicity (ADCC) was demonstrated by the combination of hnCD16 CAR iT and Rituximab (% specific cytotoxicity at E:T=1:1, hnCD16 group + Rituximab: 75.64 ± 2.12; control group + Rituximab: 16.98 ± 3.87, P<0.001). To address T cell fitness, the role of CD38 knockout (KO) in T cells was investigated, which we have previously shown to mediate NK cell resistance to oxidative stress induced apoptosis. CD38 gene was disrupted at the iPSC stage to generate 1XX-CAR T cells that lack CD38 expression (% CD38+ population, CD38WT group: 69.67 ± 24.34; CD38KO group: 0.12 ± 0.11) and upon antigen mediated stimulation, CD38KO CAR iT cells showed higher percentages of degranulation (2.3-fold increase in CD107a/b), and IFNγ (4.1-fold increase) and TNFα (2.5-fold increase) production. Antigen specific in vitro tumor killing also was enhanced in CD38KO CAR iT cells (EC50, 3.2-fold decrease). Lastly, to avoid the potential host-mediated rejection, the inclusion of allogeneic defense receptor (ADR) which has been shown to significantly reduce host-mediated rejection will be discussed. Collectively, the described studies demonstrate that iPSCs are an ideal cellular source to generate large-quantities of uniformly multi-edited off-the-shelf CAR T cell products that include a best-in-class CAR design, enhanced product modalities, and complete elimination of TCR expression to avoid the potential of GvHD while maintaining high anti-tumor efficacy in allogeneic setting. Disclosures Hsia: Fate Therapeutics Inc.: Current Employment. Clarke:Fate Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Lee:Fate Therapeutics, Inc.: Current Employment. Robbins:Fate Therapeutics, Inc.: Current Employment. Denholtz:Fate Therapeutics, Inc: Current Employment. Hanok:Fate Therapeutics, Inc.: Current Employment. Carron:Fate Therapeutics, Inc.: Current Employment. Navarrete:Fate Therapeutics, Inc.: Current Employment. ORourke:Fate Therapeutics, Inc.: Current Employment. Sung:Fate Therapeutics, Inc.: Current Employment. Gentile:Fate Therapeutics, Inc.: Current Employment. Nguyen:Fate Therapeutics, Inc.: Current Employment. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sophie_W完成签到,获得积分10
刚刚
hao完成签到,获得积分10
1秒前
单细胞完成签到 ,获得积分0
2秒前
那啥完成签到 ,获得积分0
4秒前
Robertchen完成签到,获得积分10
6秒前
科研通AI2S应助佳佳采纳,获得10
6秒前
无花果应助佳佳采纳,获得10
6秒前
Vesper完成签到,获得积分10
6秒前
AeroY完成签到,获得积分10
7秒前
FashionBoy应助北川采纳,获得10
7秒前
lilac发布了新的文献求助10
7秒前
orixero应助Shandongdaxiu采纳,获得10
8秒前
Sunnpy完成签到 ,获得积分10
10秒前
啦啦啦完成签到,获得积分10
11秒前
追寻清完成签到,获得积分10
14秒前
研友_O8W2PZ完成签到,获得积分10
16秒前
17秒前
和谐为上完成签到,获得积分10
18秒前
北川发布了新的文献求助10
21秒前
21秒前
佳佳完成签到,获得积分10
22秒前
22秒前
张烤明完成签到,获得积分10
23秒前
yuqinghui98发布了新的文献求助10
23秒前
25秒前
25秒前
啥子那完成签到,获得积分10
26秒前
亦汐完成签到 ,获得积分10
26秒前
直率的人生完成签到,获得积分10
26秒前
laoz完成签到,获得积分10
26秒前
鲜艳的向南完成签到,获得积分20
27秒前
lmr发布了新的文献求助20
27秒前
27秒前
骄傲yy发布了新的文献求助10
27秒前
戴遇好完成签到 ,获得积分10
28秒前
喜悦乾发布了新的文献求助10
30秒前
王婷萱完成签到,获得积分10
30秒前
Jau完成签到,获得积分0
30秒前
科研通AI2S应助ddddd采纳,获得10
32秒前
da发布了新的文献求助10
32秒前
高分求助中
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Models of Teaching(The 10th Edition,第10版!)《教学模式》(第10版!) 800
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
Nonlocal Integral Equation Continuum Models: Nonstandard Symmetric Interaction Neighborhoods and Finite Element Discretizations 600
Academic entitlement: Adapting the equity preference questionnaire for a university setting 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2872686
求助须知:如何正确求助?哪些是违规求助? 2481157
关于积分的说明 6721419
捐赠科研通 2166968
什么是DOI,文献DOI怎么找? 1151187
版权声明 585720
科研通“疑难数据库(出版商)”最低求助积分说明 565145