过电位
电催化剂
塔菲尔方程
无机化学
氢氧化物
催化作用
化学
镍
碱性水电解
硫化镍
电化学
电解
氧化物
硫化物
氧化还原
电极
物理化学
电解质
有机化学
作者
Sengeni Anantharaj,Hisashi Sugime,Suguru Noda
标识
DOI:10.1016/j.cej.2020.127275
摘要
Non-oxide/hydroxide hydrogen evolution reaction (HER) catalysts undergo hydroxylation to a significant extent even under reductive condition when exposed to alkali. Actual role of such hydroxylation in alkaline HER electrocatalysis is not previously given any significance. In this study, we report an intriguing finding that nickel sulfide a well-known HER electrocatalyst when subjected to anodic potential cycling covering Ni2+and Ni3+redox couple led to accelerated hydroxylation accompanying surface amorphization. As a result, improved electrochemical surface, better HER kinetics, and better charge transfer were achieved that lowering the HER overpotential by 110 mV at 100 mA cm2. This surface amorphized and hydroxylated nickel sulfide exhibited excellent stability upon both galvanostatic and potentiostatic electrolysis for over 50 h. Besides, it also showed a lower Tafel slope (120 mV dec-1), higher relative ECSA in terms of 2Cdl (3.85 µF cm−2), and higher electrochemical accessibility for Ni sites (3.7 × 1017 cm−2) which further advocate the superiority of our way of improving HER activity of a non-oxide/hydroxide catalyst. Thus, this study open up new avenues for re-examining other non-oxide/hydroxide catalysts in alkaline HER for benefiting the energy and cost-efficient hydrogen generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI