Information Design for Congested Social Services: Optimal Need-Based Persuasion

程式化事实 人口 帕累托原理 社会福利 信息共享 计算机科学 业务 经济 运营管理 万维网 政治学 宏观经济学 社会学 人口学 法学
作者
Jerry Anunrojwong,Krishnamurthy Iyer,Vahideh Manshadi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (7): 3778-3796 被引量:21
标识
DOI:10.1287/mnsc.2022.4548
摘要

We study the effectiveness of information design in reducing congestion in social services catering to users with varied levels of need. In the absence of price discrimination and centralized admission, the provider relies on sharing information about wait times to improve welfare. We consider a stylized model with heterogeneous users who differ in their private outside options: low-need users have an acceptable outside option to the social service, whereas high-need users have no viable outside option. Upon arrival, a user decides to wait for the service by joining an unobservable first-come-first-serve queue, or leave and seek her outside option. To reduce congestion and improve social outcomes, the service provider seeks to persuade more low-need users to avail their outside option, and thus better serve high-need users. We characterize the Pareto-efficient signaling mechanisms and compare their welfare outcomes against several benchmarks. We show that if either type is the overwhelming majority of the population, then information design does not provide improvement over sharing full information or no information. On the other hand, when the population is sufficiently heterogeneous, information design not only Pareto-dominates full-information and no-information mechanisms, in some regimes it also achieves the same welfare as the “first-best,” that is, the Pareto-efficient centralized admission policy with knowledge of users’ types. This paper was accepted by Gabriel Weintraub, revenue management and market analytics. Funding: This work was supported by the National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation [Grants CMMI-2002155 and CMMI-2002156]. Supplemental Material: The data and e-companion are available at https://doi.org/10.1287/mnsc.2022.4548 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助BaiX采纳,获得10
刚刚
大工梧桐发布了新的文献求助10
刚刚
香蕉君达完成签到,获得积分10
刚刚
1秒前
小马甲应助愉快的定帮采纳,获得10
1秒前
科目三应助自由刺猬采纳,获得20
2秒前
futing完成签到,获得积分10
2秒前
老鼠爱吃fish完成签到,获得积分10
2秒前
xiaoou完成签到,获得积分10
2秒前
科研通AI2S应助VDC采纳,获得10
3秒前
3秒前
胡天萌完成签到 ,获得积分10
3秒前
正义的小怪兽完成签到,获得积分20
3秒前
wanci应助刘星星采纳,获得10
3秒前
完美世界应助jekyll采纳,获得10
4秒前
自然怀梦完成签到,获得积分10
4秒前
4秒前
neo完成签到,获得积分10
5秒前
完美世界应助lyn采纳,获得30
5秒前
情怀应助Jackcaosky采纳,获得200
5秒前
123发布了新的文献求助10
5秒前
buno应助hhh采纳,获得10
6秒前
SYLH应助wltwb采纳,获得10
6秒前
Rui发布了新的文献求助10
6秒前
斯文败类应助快乐小文采纳,获得30
6秒前
8秒前
尹天扬完成签到,获得积分10
9秒前
9秒前
大方大船完成签到,获得积分10
10秒前
Sigyn完成签到,获得积分10
10秒前
顺利琦发布了新的文献求助10
10秒前
10秒前
自由完成签到,获得积分20
11秒前
Volta_zz完成签到,获得积分10
11秒前
11秒前
欣欣子完成签到,获得积分10
12秒前
13秒前
111完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678