DScribe: Library of descriptors for machine learning in materials science

计算机科学 基质(化学分析) 计算科学 矩阵乘法 软件 张量(固有定义) 实施 特征(语言学) 人工智能 算法 物理 化学 数学 量子力学 几何学 程序设计语言 语言学 哲学 色谱法 量子
作者
Lauri Himanen,Marc O. J. Jäger,Eiaki V. Morooka,Filippo Federici Canova,Yashasvi S. Ranawat,David Gao,Patrick Rinke,Adam S. Foster
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:247: 106949-106949 被引量:515
标识
DOI:10.1016/j.cpc.2019.106949
摘要

DScribe is a software package for machine learning that provides popular feature transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the application of machine learning for atomistic property prediction by providing user-friendly, off-the-shelf descriptor implementations. The package currently contains implementations for Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Function (ACSF) and Smooth Overlap of Atomic Positions (SOAP). Usage of the package is illustrated for two different applications: formation energy prediction for solids and ionic charge prediction for atoms in organic molecules. The package is freely available under the open-source Apache License 2.0. Program Title: DScribe Program Files doi: http://dx.doi.org/10.17632/vzrs8n8pk6.1 Licensing provisions: Apache-2.0 Programming language: Python/C/C++ Supplementary material: Supplementary Information as PDF Nature of problem: The application of machine learning for materials science is hindered by the lack of consistent software implementations for feature transformations. These feature transformations, also called descriptors, are a key step in building machine learning models for property prediction in materials science. Solution method: We have developed a library for creating common descriptors used in machine learning applied to materials science. We provide an implementation the following descriptors: Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Functions (ACSF) and Smooth Overlap of Atomic Positions (SOAP). The library has a python interface with computationally intensive routines written in C or C++. The source code, tutorials and documentation are provided online. A continuous integration mechanism is set up to automatically run a series of regression tests and check code coverage when the codebase is updated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fafafa发布了新的文献求助10
1秒前
Nium完成签到,获得积分10
1秒前
2秒前
彭于晏应助幸福的初晴采纳,获得30
4秒前
hjhhje完成签到,获得积分10
4秒前
传奇3应助青山采纳,获得10
5秒前
标致缘郡完成签到,获得积分20
5秒前
7秒前
标致缘郡发布了新的文献求助10
8秒前
8秒前
刘球球应助XCXC采纳,获得50
9秒前
大力的寻琴完成签到 ,获得积分10
10秒前
12秒前
12秒前
法官大人发布了新的文献求助10
13秒前
CHEN完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
lili发布了新的文献求助10
15秒前
15秒前
陈住汽完成签到,获得积分10
16秒前
青山发布了新的文献求助10
17秒前
17秒前
shidu发布了新的文献求助10
18秒前
XCXC完成签到,获得积分10
19秒前
Akim应助xuan采纳,获得10
20秒前
危机的含莲完成签到,获得积分10
20秒前
乐乐应助lelele采纳,获得10
20秒前
joshar发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助30
21秒前
dara997发布了新的文献求助10
22秒前
邰归发布了新的文献求助20
22秒前
Liu发布了新的文献求助10
22秒前
Potato完成签到,获得积分10
22秒前
22秒前
闪闪念文发布了新的文献求助10
22秒前
22秒前
123发布了新的文献求助10
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963