Capillary Condensation of Single- and Multicomponent Fluids in Nanopores

开尔文方程 毛细管冷凝 表面张力 纳米孔 状态方程 毛细管作用 冷凝 吸附 热力学 工作(物理) 化学 毛细管压力 毛细管长度 分子 弯月面 材料科学 多孔介质 纳米技术 物理化学 物理 多孔性 光学 有机化学 入射(几何)
作者
Gang Yang,Di Chai,Zhaoqi Fan,Xiaoli Li
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:58 (41): 19302-19315 被引量:21
标识
DOI:10.1021/acs.iecr.9b04116
摘要

The phase behavior of fluids in nanopores deviates significantly from that in bulk space. However, the effect of pore confinement on the capillary condensation in nanopores has not been fully understood. In this work, the classic Kelvin equation is modified by incorporating the real gas effect, along with the pore size effect on the surface tension, the multilayer adsorption, and the molecule–wall interaction potential to improve its accuracy in calculating the capillary condensation pressure. The modified Kelvin equation is further extended for multicomponent fluids in nanopores. More specifically, an extended Peng–Robinson equation of state is applied to describe the real gas effect. The pore size effect on surface tension is reflected by accounting for the meniscus variation with pore size. The multilayer adsorption of both single- and multicomponent fluids are computed by the Brunauer–Emmett–Teller model, and the Frenkel–Halsey–Hill equation is used to calculate the molecule–wall interaction potential. Consequently, the modified Kelvin equation is validated with 42 collected experimental data, resulting in an overall relative deviation of 7.65 and 6.52% for single- and multicomponent fluids, respectively. It is also found that the molecule–wall interaction potential has the most significant contribution. Compared with the bulk condition, the capillary condensation pressure of CO2 at 265 K and the mixture CO2 + n-C5H12 + n-C6H14 at 390 K within 2 nm are predicted to be suppressed by 33.96 and 43.16%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lalala发布了新的文献求助20
1秒前
2秒前
Ale发布了新的文献求助10
2秒前
2秒前
许安完成签到,获得积分10
2秒前
3秒前
李爱国应助blackcatcaptain采纳,获得10
3秒前
就是嘀咕完成签到,获得积分10
3秒前
sssssssss完成签到,获得积分10
4秒前
过时的不愁完成签到,获得积分10
4秒前
逢陈发布了新的文献求助10
5秒前
zj发布了新的文献求助10
5秒前
5秒前
dwls完成签到,获得积分10
6秒前
隐形曼青应助Ale采纳,获得10
6秒前
SciGPT应助水果采纳,获得30
7秒前
7秒前
NexusExplorer应助勤劳的音响采纳,获得10
8秒前
彭于晏应助朽木采纳,获得10
8秒前
ppll3906发布了新的文献求助10
8秒前
9秒前
安安发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
整齐思天发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
Orange应助天易车网官网采纳,获得20
12秒前
FashionBoy应助落后的采波采纳,获得10
13秒前
Yelicious发布了新的文献求助10
13秒前
13秒前
13秒前
hyy发布了新的文献求助10
14秒前
逢陈完成签到,获得积分10
14秒前
15秒前
天真的不尤完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298