Rapid and label-free classification of pathogens based on light scattering, reduced power spectral features and support vector machine

支持向量机 光学 人工智能 光电探测器 激光器 计算机科学 光散射 光强度 探测器 散射 生物系统 模式识别(心理学) 材料科学 物理 生物
作者
Mubashir Hussain,Zhe Chen,Mu Lv,Jingyi Xu,Xiaohan Dong,Jingzhou Zhao,Song Li,Yan Deng,Nongyue He,Zhiyang Li,Bin Liu
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:31 (12): 3163-3167 被引量:23
标识
DOI:10.1016/j.cclet.2020.04.038
摘要

The rapid identification of pathogens is crucial in controlling the food quality and safety. The proposed system for the rapid and label-free identification of pathogens is based on the principle of laser scattering from the bacterial microbes. The clinical prototype consists of three parts: the laser beam, photodetectors, and the data acquisition system. The bacterial testing sample was mixed with 10 mL distilled water and placed inside the machine chamber. When the bacterial microbes pass by the laser beam, the scattering of light occurs due to variation in size, shape, and morphology. Due to this reason, different types of pathogens show their unique light scattering patterns. The photo-detectors were arranged at the surroundings of the sample at different angles to collect the scattered light. The photodetectors convert the scattered light intensity into a voltage waveform. The waveform features were acquired by using the power spectral characteristics, and the dimensionality of extracted features was reduced by applying minimal-redundancy-maximal-relevance criterion (mRMR). A support vector machine (SVM) classifier was developed by training the selected power spectral features for the classification of three different bacterial microbes. The resulting average identification accuracies of E. faecalis, E. coli and S. aureus were 99%, 87%, and 94%, respectively. The overall experimental results yield a higher accuracy of 93.6%, indicating that the proposed device has the potential for label-free identification of pathogens with simplicity, rapidity, and cost-effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
凯凯发布了新的文献求助10
1秒前
刘双发布了新的文献求助10
2秒前
秋秋发布了新的文献求助10
2秒前
2秒前
2秒前
ely发布了新的文献求助10
2秒前
充电宝应助欻欻采纳,获得10
2秒前
haowu发布了新的文献求助10
2秒前
3秒前
Abdurrahman发布了新的文献求助10
4秒前
颖颖子发布了新的文献求助10
4秒前
leey发布了新的文献求助10
5秒前
5秒前
以恒之心完成签到,获得积分10
5秒前
小房子完成签到 ,获得积分10
6秒前
fmwang完成签到,获得积分10
6秒前
6秒前
6秒前
Nana2021发布了新的文献求助30
8秒前
华仔应助谦让友绿采纳,获得10
8秒前
ding应助北河三β采纳,获得10
8秒前
小二郎应助二十八化生采纳,获得30
9秒前
坦率ling发布了新的文献求助10
9秒前
suiyi发布了新的文献求助10
9秒前
9秒前
要减肥的高山完成签到,获得积分10
10秒前
11秒前
12秒前
TY发布了新的文献求助10
12秒前
12秒前
Cheryy完成签到,获得积分10
13秒前
想人陪的短靴完成签到,获得积分10
13秒前
万能图书馆应助suiyi采纳,获得10
14秒前
14秒前
情怀应助要减肥的高山采纳,获得10
15秒前
15秒前
veblem发布了新的文献求助10
16秒前
16秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122329
求助须知:如何正确求助?哪些是违规求助? 2772690
关于积分的说明 7714624
捐赠科研通 2428211
什么是DOI,文献DOI怎么找? 1289656
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183