Rapid and label-free classification of pathogens based on light scattering, reduced power spectral features and support vector machine

支持向量机 光学 人工智能 光电探测器 激光器 计算机科学 光散射 光强度 探测器 散射 生物系统 模式识别(心理学) 材料科学 物理 生物
作者
Mubashir Hussain,Zhe Chen,Mu Lv,Jingyi Xu,Xiaohan Dong,Jingzhou Zhao,Song Li,Yan Deng,Nongyue He,Zhiyang Li,Bin Liu
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:31 (12): 3163-3167 被引量:23
标识
DOI:10.1016/j.cclet.2020.04.038
摘要

The rapid identification of pathogens is crucial in controlling the food quality and safety. The proposed system for the rapid and label-free identification of pathogens is based on the principle of laser scattering from the bacterial microbes. The clinical prototype consists of three parts: the laser beam, photodetectors, and the data acquisition system. The bacterial testing sample was mixed with 10 mL distilled water and placed inside the machine chamber. When the bacterial microbes pass by the laser beam, the scattering of light occurs due to variation in size, shape, and morphology. Due to this reason, different types of pathogens show their unique light scattering patterns. The photo-detectors were arranged at the surroundings of the sample at different angles to collect the scattered light. The photodetectors convert the scattered light intensity into a voltage waveform. The waveform features were acquired by using the power spectral characteristics, and the dimensionality of extracted features was reduced by applying minimal-redundancy-maximal-relevance criterion (mRMR). A support vector machine (SVM) classifier was developed by training the selected power spectral features for the classification of three different bacterial microbes. The resulting average identification accuracies of E. faecalis, E. coli and S. aureus were 99%, 87%, and 94%, respectively. The overall experimental results yield a higher accuracy of 93.6%, indicating that the proposed device has the potential for label-free identification of pathogens with simplicity, rapidity, and cost-effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏的潘子完成签到,获得积分10
刚刚
1秒前
阿雷发布了新的文献求助10
1秒前
久久应助凯文采纳,获得10
2秒前
2秒前
zzjl发布了新的文献求助10
3秒前
Kang完成签到,获得积分10
3秒前
4秒前
枫叶完成签到 ,获得积分10
4秒前
5秒前
黄文燕完成签到 ,获得积分20
5秒前
zhangling完成签到,获得积分10
5秒前
栗子鱼完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
思源应助lily采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
顺心飞雪完成签到,获得积分10
9秒前
华仔应助facaihua采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
djiwisksk66应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126