A Novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 Cathode for Na-ion Batteries

材料科学 电解质 阴极 氧化物 插层(化学) 电化学 相(物质) 扩散 离子 化学工程 分析化学(期刊) 电极 无机化学 物理化学 热力学 冶金 有机化学 工程类 化学 色谱法 物理
作者
Feixiang Ding,Chenglong Zhao,Dong Zhou,Qingshi Meng,Dongdong Xiao,Qiangqiang Zhang,Yaoshen Niu,Yuqi Li,Xiaohui Rong,Yaxiang Lu,Liquan Chen,Yong‐Sheng Hu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:30: 420-430 被引量:150
标识
DOI:10.1016/j.ensm.2020.05.013
摘要

O3-type layered oxide materials are being considered as one of the most promising cathodes for Na-ion batteries owing to their higher capacity, however, they usually suffer from structural damage at the highly desodiated state. To achieve the stable/high-capacity O3-type Na-ion cathodes, a series of Ni-rich O3–Na[NixFeyMn1-x-y]O2 (x ​= ​0.6, 0.7 and 0.8) oxide cathodes were successfully prepared and the phase transitions at high voltage were systematically investigated. Combined with the electrochemical measurements and structural characterizations, the structural transitions from O3 to O′3, P3, O3″ phases during the Na+ (de)intercalation process were demonstrated in the voltage range of 2.0–4.2 ​V. Moreover, several reasons for the high-voltage capacity decay are revealed: 1) the thermodynamic instability of high-voltage phase due to less Na+ in the crystal structure; 2) large volume change during the high-voltage phase evolution with inferior Na+ diffusion kinetics; 3) formation of microcracks and cathode-electrolyte interphase on the surface of cathode particles. To address the above issues, a reasonable upper cut-off voltage of 4.0 ​V was set to prevent the formation of O3″ phase and reduce electrolyte decomposition, which leads to a high reversible capacity of ~152 mAh g−1 (~467 ​Wh kg−1) with a superior capacity retention of ~84% after 200 cycles at 0.5C, showing great Na storage performance. This work provides insights on the relationship of the structure-property for the further development of high-performance Ni-rich O3-type Na-ion cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qym发布了新的文献求助10
刚刚
1秒前
1秒前
小柠檬发布了新的文献求助10
2秒前
风思雅完成签到,获得积分10
2秒前
文艺雯发布了新的文献求助30
2秒前
阿尔法完成签到,获得积分10
2秒前
纯真电源完成签到,获得积分20
2秒前
lili完成签到 ,获得积分10
3秒前
3秒前
wanci应助小豆芽儿采纳,获得10
4秒前
麻烦~完成签到,获得积分10
4秒前
5秒前
华仔应助gaos采纳,获得10
5秒前
迪迦发布了新的文献求助30
6秒前
糊涂的勒完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
seven完成签到,获得积分10
6秒前
wzxxxx完成签到,获得积分20
6秒前
7秒前
fffzy完成签到,获得积分10
7秒前
MADKAI发布了新的文献求助50
7秒前
lkn完成签到,获得积分10
7秒前
浦肯野举报单薄凌蝶求助涉嫌违规
8秒前
爱撒娇的橘子完成签到,获得积分10
8秒前
8秒前
Owen应助皮蛋瘦肉周采纳,获得10
9秒前
李漂亮完成签到,获得积分10
9秒前
222完成签到 ,获得积分10
9秒前
wzxxxx发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
文艺谷蓝完成签到,获得积分10
11秒前
丰富的复天完成签到,获得积分10
11秒前
干净的寒天完成签到,获得积分10
11秒前
科研通AI5应助WNL采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678