Video denoising and moving object detection by rank-1 and total variation regularization on robust principal component analysis framework

稳健主成分分析 全变差去噪 降噪 主成分分析 计算机科学 正规化(语言学) 人工智能 视频去噪 模式识别(心理学) 稀疏逼近 秩(图论) 计算机视觉 视频跟踪 算法 数学 视频处理 组合数学 多视点视频编码
作者
Guoliang Yang,Yu Dingling,Junlin Wen,Jian‐Bin Lin,Liming Liang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:29 (03): 1-1 被引量:2
标识
DOI:10.1117/1.jei.29.3.033007
摘要

With the complexity of the video environment and the problem of possible noise during data transmission, traditional robust principal component analysis (RPCA) failed to obtain the lowest rank representation from corrupted data. A method of video denoising and an object detection algorithm based on the RPCA model with total variation and rank-1 constraint (TVR1-RPCA) is proposed; it employs the more refined prior representations for the static and dynamic components of the video sequences. The proposed method is based on RPCA under the framework of low-rank sparse decomposition; the rank-1 constraint is exploited to describe the strong low-rank property of the background layer, TV regularization is combined with l1 regularization to constrain the sparsity and spatial continuity of the foreground component, and l2 norm regularization is combined to constrain the noise to make up for the deficiencies of the existing RPCA model. In addition, an efficient algorithm based on the alternating direction method of multipliers is designed to solve the proposed video denoising and moving object detection issues. Our experiments on static and moving camera videos demonstrate that the proposed method is superior to the state-of-the-art methods in terms of denoising capability and detection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小羊小羊发布了新的文献求助10
刚刚
1秒前
内向映天完成签到 ,获得积分10
1秒前
存在完成签到,获得积分10
1秒前
蒹葭苍苍完成签到,获得积分10
2秒前
3秒前
峰1992发布了新的文献求助10
4秒前
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Dobrzs应助科研通管家采纳,获得10
5秒前
Lucas应助哈哈采纳,获得10
6秒前
6秒前
NexusExplorer应助司空豁采纳,获得10
7秒前
星辰大海应助SH采纳,获得10
7秒前
小情绪应助fdscat采纳,获得10
7秒前
心木完成签到 ,获得积分10
7秒前
8秒前
迎风完成签到,获得积分10
8秒前
鳗鱼飞船发布了新的文献求助10
9秒前
10秒前
11秒前
千跃应助九卫采纳,获得20
11秒前
12秒前
13秒前
14秒前
14秒前
SMLW发布了新的文献求助10
14秒前
科研通AI2S应助丢丢采纳,获得10
14秒前
14秒前
彭于晏应助柒_l采纳,获得10
15秒前
包容秋荷发布了新的文献求助20
15秒前
xiong完成签到,获得积分20
16秒前
zhoujialin820完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000