Video denoising and moving object detection by rank-1 and total variation regularization on robust principal component analysis framework

稳健主成分分析 全变差去噪 降噪 主成分分析 计算机科学 正规化(语言学) 人工智能 视频去噪 模式识别(心理学) 稀疏逼近 秩(图论) 计算机视觉 视频跟踪 算法 数学 视频处理 组合数学 多视点视频编码
作者
Guoliang Yang,Yu Dingling,Junlin Wen,Jian‐Bin Lin,Liming Liang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:29 (03): 1-1 被引量:2
标识
DOI:10.1117/1.jei.29.3.033007
摘要

With the complexity of the video environment and the problem of possible noise during data transmission, traditional robust principal component analysis (RPCA) failed to obtain the lowest rank representation from corrupted data. A method of video denoising and an object detection algorithm based on the RPCA model with total variation and rank-1 constraint (TVR1-RPCA) is proposed; it employs the more refined prior representations for the static and dynamic components of the video sequences. The proposed method is based on RPCA under the framework of low-rank sparse decomposition; the rank-1 constraint is exploited to describe the strong low-rank property of the background layer, TV regularization is combined with l1 regularization to constrain the sparsity and spatial continuity of the foreground component, and l2 norm regularization is combined to constrain the noise to make up for the deficiencies of the existing RPCA model. In addition, an efficient algorithm based on the alternating direction method of multipliers is designed to solve the proposed video denoising and moving object detection issues. Our experiments on static and moving camera videos demonstrate that the proposed method is superior to the state-of-the-art methods in terms of denoising capability and detection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助xuqiansd采纳,获得10
1秒前
芝诺完成签到,获得积分10
1秒前
陈傲雪发布了新的文献求助10
1秒前
Dr发布了新的文献求助10
1秒前
宁少爷发布了新的文献求助10
2秒前
2秒前
彩彩完成签到,获得积分10
2秒前
阳光香水发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
6秒前
量子星尘发布了新的文献求助50
7秒前
7秒前
山楂卷关注了科研通微信公众号
7秒前
杨杨杨发布了新的文献求助30
8秒前
烟花应助奖品肉麻膏耶采纳,获得10
9秒前
指数爆炸发布了新的文献求助10
10秒前
mwzeng发布了新的文献求助10
10秒前
赘婿应助ziyiziyi采纳,获得10
10秒前
李慕溪发布了新的文献求助20
10秒前
JACKPAN完成签到,获得积分10
10秒前
西瓜妹发布了新的文献求助10
12秒前
科研通AI5应助身处人海采纳,获得10
13秒前
Hao完成签到,获得积分10
14秒前
酷波er应助陈傲雪采纳,获得10
14秒前
顺利的小懒猪完成签到 ,获得积分10
15秒前
一棵树莓给一棵树莓的求助进行了留言
15秒前
小蘑菇应助JACKPAN采纳,获得10
18秒前
YoroYoshi完成签到,获得积分10
20秒前
20秒前
20秒前
科研通AI5应助mwzeng采纳,获得10
20秒前
21秒前
22秒前
量子星尘发布了新的文献求助50
23秒前
Gzh_NJ完成签到,获得积分10
23秒前
YoroYoshi发布了新的文献求助10
23秒前
生动路人发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360