Tool wear monitoring in micromilling using Support Vector Machine with vibration and sound sensors

机械加工 刀具磨损 振动 表面微加工 过程(计算) 声学 支持向量机 机械工程 计算机科学 材料科学 工程类 人工智能 物理 制作 医学 替代医学 病理 操作系统
作者
Milla Caroline Gomes,Lucas Costa Brito,Márcio Bacci da Silva,Marcus Antônio Viana Duarte
出处
期刊:Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology [Elsevier BV]
卷期号:67: 137-151 被引量:115
标识
DOI:10.1016/j.precisioneng.2020.09.025
摘要

Abstract Cutting tool wear is inevitable and becomes even more critical in micromachining processes, due to the small size of the microtools, which makes it impossible to detect any damage or break in the microtool without the use of high magnification microscopy. Therefore, monitoring the wear conditions of microtools is essential to guarantee the quality of the surfaces generated by micromachining processes. Even with the use of sensors, because of the complexity and similarity of the signals, identifying changes related to variation in wear is not a simple task. To overcome these problems, this paper presents a new approach to monitor the wear of cutting tools used in the micromilling process using SVM (Support Vector Machine) artificial intelligence model, vibration and sound signals. The signals were acquired for microchannels manufactured using carbide microtools coated with (Al, Ti) N, with a cutting diameter of 400 μm. The input features for the model were selected using the RFE method (Recursive Feature Elimination). In addition to the main objective, the behavior of the wear curve of the microtool in relation to the wear curve of the conventional machining process was studied. The results showed that the behavior of the curves were similar and the microtool with shorter cutting length had a longer life. The proposed classification methodology obtained a classification accuracy of up to 97.54%, showing that it is possible to use it to monitor the cutting tool wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
所所应助琪琪采纳,获得10
2秒前
3秒前
5秒前
11完成签到,获得积分10
5秒前
5秒前
拉拉发布了新的文献求助10
7秒前
7秒前
冉徐凤发布了新的文献求助10
8秒前
忙碌的数学人完成签到,获得积分10
9秒前
Liu完成签到,获得积分10
10秒前
加减乘除发布了新的文献求助10
10秒前
10秒前
Hello应助roclie采纳,获得10
11秒前
12秒前
锤子发布了新的文献求助10
12秒前
自由莺完成签到 ,获得积分10
12秒前
正直无极完成签到,获得积分10
13秒前
ym完成签到 ,获得积分10
13秒前
laura发布了新的文献求助10
13秒前
李健应助屹男采纳,获得10
16秒前
16秒前
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
Dada应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得30
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
拉拉完成签到,获得积分20
17秒前
CCL应助科研通管家采纳,获得40
17秒前
棋士应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
liaodongjun应助科研通管家采纳,获得10
17秒前
17秒前
棋士应助科研通管家采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500524
关于积分的说明 11099808
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869904
科研通“疑难数据库(出版商)”最低求助积分说明 801717