Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms

肌酐 医学 算法 视网膜 糖尿病 内科学 肾功能 全身炎症 眼科 内分泌学 计算机科学 炎症
作者
Tyler Hyungtaek Rim,Geunyoung Lee,Youngnam Kim,Yih‐Chung Tham,Chan Joo Lee,Su Jung Baik,Young Ah Kim,Marco Yu,Mihir Deshmukh,Byoung Kwon Lee,Sungha Park,Hyeon Chang Kim,Charumathi Sabanayagam,Daniel Shu Wei Ting,Ya Xing Wang,Jost B. Jonas,Sung Soo Kim,Tien Yin Wong,Ching-Yu Cheng
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:2 (10): e526-e536 被引量:98
标识
DOI:10.1016/s2589-7500(20)30216-8
摘要

BackgroundThe application of deep learning to retinal photographs has yielded promising results in predicting age, sex, blood pressure, and haematological parameters. However, the broader applicability of retinal photograph-based deep learning for predicting other systemic biomarkers and the generalisability of this approach to various populations remains unexplored.MethodsWith use of 236 257 retinal photographs from seven diverse Asian and European cohorts (two health screening centres in South Korea, the Beijing Eye Study, three cohorts in the Singapore Epidemiology of Eye Diseases study, and the UK Biobank), we evaluated the capacities of 47 deep-learning algorithms to predict 47 systemic biomarkers as outcome variables, including demographic factors (age and sex); body composition measurements; blood pressure; haematological parameters; lipid profiles; biochemical measures; biomarkers related to liver function, thyroid function, kidney function, and inflammation; and diabetes. The standard neural network architecture of VGG16 was adopted for model development.FindingsIn addition to previously reported systemic biomarkers, we showed quantification of body composition indices (muscle mass, height, and bodyweight) and creatinine from retinal photographs. Body muscle mass could be predicted with an R2 of 0·52 (95% CI 0·51–0·53) in the internal test set, and of 0·33 (0·30–0·35) in one external test set with muscle mass measurement available. The R2 value for the prediction of height was 0·42 (0·40–0·43), of bodyweight was 0·36 (0·34–0·37), and of creatinine was 0·38 (0·37–0·40) in the internal test set. However, the performances were poorer in external test sets (with the lowest performance in the European cohort), with R2 values ranging between 0·08 and 0·28 for height, 0·04 and 0·19 for bodyweight, and 0·01 and 0·26 for creatinine. Of the 47 systemic biomarkers, 37 could not be predicted well from retinal photographs via deep learning (R2≤0·14 across all external test sets).InterpretationOur work provides new insights into the potential use of retinal photographs to predict systemic biomarkers, including body composition indices and serum creatinine, using deep learning in populations with a similar ethnic background. Further evaluations are warranted to validate these findings and evaluate the clinical utility of these algorithms.FundingAgency for Science, Technology, and Research and National Medical Research Council, Singapore; Korea Institute for Advancement of Technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Theo完成签到,获得积分10
刚刚
柒月发布了新的文献求助10
1秒前
阳光的静白完成签到,获得积分10
2秒前
3秒前
dd完成签到,获得积分10
3秒前
折花浅笑完成签到,获得积分10
4秒前
弹指一挥间完成签到,获得积分10
5秒前
5秒前
Miao完成签到,获得积分10
5秒前
Annlucy发布了新的文献求助50
6秒前
ElbingX发布了新的文献求助30
9秒前
安静无招发布了新的文献求助10
11秒前
活力的雁荷完成签到,获得积分20
11秒前
时尚的冰棍儿完成签到 ,获得积分10
11秒前
钙离子完成签到,获得积分10
13秒前
snow完成签到 ,获得积分10
13秒前
搜集达人应助俭朴夏菡采纳,获得10
15秒前
科研完成签到,获得积分10
15秒前
Joyj99完成签到,获得积分10
16秒前
发发发财完成签到,获得积分10
17秒前
chao关注了科研通微信公众号
17秒前
Kriemhild完成签到,获得积分10
18秒前
19秒前
研友_太叔紫夏完成签到,获得积分10
20秒前
研友_VZG7GZ应助发发发财采纳,获得10
21秒前
三杠发布了新的文献求助20
21秒前
zeyee发布了新的文献求助10
22秒前
m弟完成签到 ,获得积分10
22秒前
24秒前
phg021发布了新的文献求助10
25秒前
虚心以丹完成签到,获得积分10
26秒前
星曳完成签到,获得积分10
28秒前
威武的匕完成签到,获得积分10
28秒前
ljc完成签到 ,获得积分10
31秒前
overThat发布了新的文献求助10
31秒前
Annlucy完成签到 ,获得积分10
32秒前
安静无招完成签到 ,获得积分10
34秒前
嘻嘻完成签到,获得积分10
34秒前
贪玩路灯完成签到,获得积分10
35秒前
大牛顿完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162652
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900951
捐赠科研通 2473107
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175