Nonparametric Phase-II control charts for monitoring high-dimensional processes with unknown parameters

控制图 多元统计 非参数统计 统计过程控制 参数统计 统计 样本量测定 样品(材料) 集合(抽象数据类型) 数据挖掘 计算机科学 数学 过程(计算) 机器学习 化学 操作系统 色谱法 程序设计语言
作者
Amitava Mukherjee,Marco Marozzi
出处
期刊:Journal of Quality Technology [Informa]
卷期号:54 (1): 44-64 被引量:38
标识
DOI:10.1080/00224065.2020.1805378
摘要

Monitoring multivariate and high-dimensional data streams is often an essential requirement for quality management in manufacturing and service sectors in the Industry 4.0 era. Identifying a suitable distribution for a multivariate data set, especially when the number of variables is much larger than the sample size, is often challenging. Consequently, in a high-dimensional set-up, that is, when the number of variables under investigation exceeds sample size, parametric methods are generally not reliable in practice. There are various nonparametric schemes based on data depth for multivariate process monitoring, which are applicable only when the sample size is reasonably larger than the number of variables in the process but not in a high-dimensional set-up. We discuss that most of these charts are not robust when the true process parameters are unknown. There are, however, some nonparametric schemes for a high-dimensional process, when true process parameters are known. Nevertheless, when process parameters are unknown, a highly robust nonparametric scheme for monitoring high-dimensional processes is not yet available. In this paper, we propose some Shewhart-type nonparametric monitoring schemes based on specific distance metrics for surveillance of multivariate as well as high-dimensional processes. Our proposed charts are easy to implement, interpret and also advantageous in simultaneous monitoring of multiple aspects. We discuss the design and implementation issues in details. We carry out a performance study using Monte Carlo simulations and illustrate the proposed methods using a dataset related to industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xyz完成签到,获得积分10
2秒前
好梦完成签到,获得积分10
3秒前
JamesPei应助枫叶采纳,获得10
4秒前
Hello应助AgU采纳,获得10
4秒前
tt完成签到 ,获得积分10
4秒前
MasterE完成签到,获得积分10
5秒前
雪白砖家完成签到,获得积分10
5秒前
会撒娇的东东完成签到 ,获得积分10
6秒前
bkagyin应助清萍红檀采纳,获得10
7秒前
7秒前
昏睡的半鬼完成签到 ,获得积分10
7秒前
8秒前
傲娇班发布了新的文献求助10
8秒前
8秒前
无敌老金刚完成签到 ,获得积分10
8秒前
8秒前
甲乙丙丁完成签到,获得积分10
9秒前
结实芝麻完成签到 ,获得积分10
10秒前
好吃完成签到,获得积分10
11秒前
13秒前
不配.应助肖小小采纳,获得20
13秒前
yihuifa完成签到 ,获得积分10
13秒前
坚强亦丝应助多读论文采纳,获得20
13秒前
13秒前
糊涂涂发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
vvvvvv发布了新的文献求助10
15秒前
16秒前
自由的自中完成签到 ,获得积分10
17秒前
枫叶发布了新的文献求助10
18秒前
GGBoy完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
深情安青应助freshman3005采纳,获得30
20秒前
炙热水风发布了新的文献求助30
20秒前
Luyao发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825