Reconstructing organisms in silico: genome-scale models and their emerging applications

基因组 生物 计算生物学 生物信息学 蛋白质组 计算模型 选择(遗传算法) 遗传学 基因 计算机科学 人工智能
作者
Xin Fang,Colton J. Lloyd,Bernhard Ø. Palsson
出处
期刊:Nature Reviews Microbiology [Springer Nature]
卷期号:18 (12): 731-743 被引量:198
标识
DOI:10.1038/s41579-020-00440-4
摘要

Escherichia coli is considered to be the best-known microorganism given the large number of published studies detailing its genes, its genome and the biochemical functions of its molecular components. This vast literature has been systematically assembled into a reconstruction of the biochemical reaction networks that underlie E. coli’s functions, a process which is now being applied to an increasing number of microorganisms. Genome-scale reconstructed networks are organized and systematized knowledge bases that have multiple uses, including conversion into computational models that interpret and predict phenotypic states and the consequences of environmental and genetic perturbations. These genome-scale models (GEMs) now enable us to develop pan-genome analyses that provide mechanistic insights, detail the selection pressures on proteome allocation and address stress phenotypes. In this Review, we first discuss the overall development of GEMs and their applications. Next, we review the evolution of the most complete GEM that has been developed to date: the E. coli GEM. Finally, we explore three emerging areas in genome-scale modelling of microbial phenotypes: collections of strain-specific models, metabolic and macromolecular expression models, and simulation of stress responses. Genome-scale models (GEMs) are mathematical representations of reconstructed networks that facilitate computation and prediction of phenotypes, and are useful tools for predicting the biological capabilities of microorganisms. In this Review, Fang, Lloyd and Palsson discuss the development and the emerging application of GEMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
内啡肽完成签到,获得积分10
1秒前
搬运工发布了新的文献求助10
1秒前
1秒前
如梦如幻91完成签到,获得积分10
1秒前
2秒前
1點點cui发布了新的文献求助30
2秒前
隐形曼青应助北雁采纳,获得10
3秒前
噜噜晓完成签到,获得积分10
4秒前
珍惜发布了新的文献求助30
5秒前
wyp完成签到,获得积分10
5秒前
6秒前
今后应助木光采纳,获得10
6秒前
传奇3应助橙花采纳,获得10
7秒前
璃月稻妻完成签到,获得积分10
7秒前
小年兽发布了新的文献求助10
7秒前
飞飞发布了新的文献求助10
7秒前
7秒前
薰硝壤应助小董大傻瓜采纳,获得20
8秒前
田様应助HC采纳,获得10
8秒前
9秒前
9秒前
Lucas应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
10秒前
小蘑菇应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得50
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
11秒前
英姑应助科研通管家采纳,获得10
11秒前
听风说情话完成签到,获得积分10
11秒前
思源应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129632
求助须知:如何正确求助?哪些是违规求助? 2780426
关于积分的说明 7748028
捐赠科研通 2435738
什么是DOI,文献DOI怎么找? 1294243
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570