Deep Learning for Fashion Style Generation

服装 计算机科学 风格(视觉艺术) 发电机(电路理论) 人工智能 图像(数学) 忠诚 人工神经网络 视觉艺术 艺术 电信 功率(物理) 物理 考古 量子力学 历史
作者
Shuhui Jiang,Jun Li,Yun Fu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4538-4550 被引量:30
标识
DOI:10.1109/tnnls.2021.3057892
摘要

In this article, we work on generating fashion style images with deep neural network algorithms. Given a garment image, and single or multiple style images (e.g., flower, blue and white porcelain), it is a challenge to generate a synthesized clothing image with single or mix-and-match styles due to the need to preserve global clothing contents with coverable styles, to achieve high fidelity of local details, and to conform different styles with specific areas. To address this challenge, we propose a fashion style generator (FashionG) framework for the single-style generation and a spatially constrained FashionG (SC-FashionG) framework for mix-and-match style generation. Both FashionG and SC-FashionG are end-to-end feedforward neural networks that consist of a generator for image transformation and a discriminator for preserving content and style globally and locally. Specifically, a global-based loss is calculated based on full images, which can preserve the global clothing form and design. A patch-based loss is calculated based on image patches, which can preserve detailed local style patterns. We develop an alternating patch-global optimization methodology to minimize these losses. Compared with FashionG, SC-FashionG employs an additional spatial constraint to ensure that each style is blended only onto a specific area of the clothing image. Extensive experiments demonstrate the effectiveness of both single-style and mix-and-match style generations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形觅翠完成签到,获得积分10
刚刚
刘鹏宇发布了新的文献求助10
刚刚
lizh187完成签到 ,获得积分10
刚刚
北城完成签到,获得积分10
刚刚
自由发布了新的文献求助10
1秒前
1秒前
小豆芽儿发布了新的文献求助10
1秒前
WNL发布了新的文献求助10
2秒前
Ngu完成签到,获得积分10
2秒前
科研通AI5应助冷艳后妈采纳,获得10
2秒前
陶1122发布了新的文献求助10
2秒前
万能图书馆应助乐观期待采纳,获得30
2秒前
krystal完成签到,获得积分10
2秒前
学术大小拿完成签到,获得积分10
3秒前
迪迦完成签到,获得积分10
3秒前
4秒前
乖乖发布了新的文献求助10
4秒前
4秒前
song24517发布了新的文献求助20
4秒前
顺利琦完成签到,获得积分10
5秒前
李子发布了新的文献求助10
5秒前
pbf完成签到,获得积分10
5秒前
5秒前
lyn发布了新的文献求助30
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
Twikky完成签到,获得积分10
5秒前
柚子皮应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
852应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
Akim应助夏末采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
迟大猫应助想学习采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678