Deep Learning Whole‐Gland and Zonal Prostate Segmentation on a Public MRI Dataset

分割 人工智能 计算机科学 前列腺 磁共振成像 数据集 模式识别(心理学) 医学 放射科 癌症 内科学
作者
Renato Cuocolo,Albert Comelli,Alessandro Stefano,Viviana Benfante,Navdeep Dahiya,Arnaldo Stanzione,Anna Castaldo,Davide Raffaele De Lucia,Anthony Yezzi,Massimo Imbriaco
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (2): 452-459 被引量:73
标识
DOI:10.1002/jmri.27585
摘要

Background Prostate volume, as determined by magnetic resonance imaging (MRI), is a useful biomarker both for distinguishing between benign and malignant pathology and can be used either alone or combined with other parameters such as prostate‐specific antigen. Purpose This study compared different deep learning methods for whole‐gland and zonal prostate segmentation. Study Type Retrospective. Population A total of 204 patients (train/test = 99/105) from the PROSTATEx public dataset. Field strength/Sequence A 3 T, TSE T 2 ‐weighted. Assessment Four operators performed manual segmentation of the whole‐gland, central zone + anterior stroma + transition zone (TZ), and peripheral zone (PZ). U‐net, efficient neural network (ENet), and efficient residual factorized ConvNet (ERFNet) were trained and tuned on the training data through 5‐fold cross‐validation to segment the whole gland and TZ separately, while PZ automated masks were obtained by the subtraction of the first two. Statistical Tests Networks were evaluated on the test set using various accuracy metrics, including the Dice similarity coefficient (DSC). Model DSC was compared in both the training and test sets using the analysis of variance test (ANOVA) and post hoc tests. Parameter number, disk size, training, and inference times determined network computational complexity and were also used to assess the model performance differences. A P < 0.05 was selected to indicate the statistical significance. Results The best DSC ( P < 0.05) in the test set was achieved by ENet: 91% ± 4% for the whole gland, 87% ± 5% for the TZ, and 71% ± 8% for the PZ. U‐net and ERFNet obtained, respectively, 88% ± 6% and 87% ± 6% for the whole gland, 86% ± 7% and 84% ± 7% for the TZ, and 70% ± 8% and 65 ± 8% for the PZ. Training and inference time were lowest for ENet. Data Conclusion Deep learning networks can accurately segment the prostate using T 2 ‐weighted images. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xk666hh发布了新的文献求助10
4秒前
阳光森林完成签到 ,获得积分10
7秒前
rance完成签到,获得积分10
9秒前
开朗的傲丝完成签到 ,获得积分10
17秒前
tjpuzhang完成签到 ,获得积分10
21秒前
xk666hh完成签到,获得积分10
21秒前
梅赛德斯奔驰完成签到,获得积分10
21秒前
尼克拉倒完成签到,获得积分10
22秒前
吃吃货完成签到 ,获得积分10
23秒前
怕瓦落地完成签到,获得积分10
24秒前
shrimp5215完成签到,获得积分10
26秒前
chen完成签到 ,获得积分10
29秒前
29秒前
yujie发布了新的文献求助10
32秒前
rance发布了新的文献求助10
33秒前
张西西完成签到 ,获得积分10
34秒前
zoe完成签到,获得积分10
44秒前
蝈蝈完成签到,获得积分10
45秒前
奋斗跳跳糖完成签到,获得积分10
47秒前
Echo完成签到,获得积分0
50秒前
小唐完成签到,获得积分10
52秒前
冰西瓜完成签到 ,获得积分10
56秒前
沙漠西瓜皮完成签到 ,获得积分10
59秒前
吱吱吱完成签到 ,获得积分10
59秒前
没头脑和不高兴完成签到,获得积分10
1分钟前
寒冷丹雪完成签到,获得积分10
1分钟前
xiaofenzi完成签到,获得积分10
1分钟前
HYJ完成签到,获得积分10
1分钟前
轻松诗霜完成签到 ,获得积分10
1分钟前
zyw完成签到 ,获得积分10
1分钟前
www完成签到 ,获得积分10
1分钟前
晓书完成签到 ,获得积分10
1分钟前
wnll完成签到,获得积分10
1分钟前
妮妮完成签到 ,获得积分10
1分钟前
慧海拾穗完成签到 ,获得积分10
1分钟前
温婉的凝丹完成签到 ,获得积分10
1分钟前
王小凡完成签到 ,获得积分10
1分钟前
倒数第二完成签到,获得积分10
1分钟前
饱满语风完成签到 ,获得积分10
1分钟前
贾方硕完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422988
求助须知:如何正确求助?哪些是违规求助? 3023333
关于积分的说明 8904173
捐赠科研通 2710821
什么是DOI,文献DOI怎么找? 1486700
科研通“疑难数据库(出版商)”最低求助积分说明 687143
邀请新用户注册赠送积分活动 682341