医学
坐骨神经
雪旺细胞
神经损伤
层粘连蛋白
周围神经损伤
化学
作者
Yu Li,Yongzhi Men,Baoxin Wang,Xinwei Chen,Ziwei Yu
标识
DOI:10.1007/s10856-020-06436-z
摘要
The objective of this paper is to investigate the possibility and efficacy of recurrent laryngeal nerve repair by transplantation of co-cultured Schwann cells and neural stem cells (NSCs) in laminin-chitosan-poly-lactic-co-glycolic acid (laminin-chitosan-PLGA) nerve conduits in rats. A laminin-chitosan-PLGA conduit was used in a rat recurrent laryngeal nerve transection model. The rat recurrent laryngeal nerve was dissected to generate a 5 mm defect. Then, a laminin-chitosan-PLGA nerve conduit with or without Schwann cells and NSCs in the lumen was transplanted into the defect. A total of 96 female rats were randomised into six groups: co-culture of NSCs and Schwann cells in the nerve conduit group (CO), Schwann cells only in the nerve conduit group (SC), neural stem cells only in the nerve conduit group (NSC-only), nerve conduit group (null), autologous nerve graft group (autograft) and sham operation group (sham). Regenerated nerves were evaluated by histological and functional assessment at 8 and 12 weeks after surgery. The diameter and area of the regenerated myelin sheath, as well as the secretion of brain-derived neurotrophic factor and glial cell-derived neurotrophic factor in laryngeal muscle or regenerated nerve tissue in the CO group, were significantly better than they were in the SC, NSC-only and null groups (all P values < 0.05). Immunofluorescence showed that the CO group had significantly more neurofilament-200 immunoreactive and S-100 immunoreactive fibres than the SC, NSC-only and null groups (all P values < 0.05). The performance of the CO groups and autograft groups was found to be similar by laryngoscopy. Arytenoid cartilage motion recovery in these two groups was significantly better than it was in the other groups (all P values < 0.05). Our results indicated that co-culture of Schwann cells and NSCs in laminin-chitosan-PLGA conduits might promote injured nerve regeneration. This method might be a promising alternative for defective nerve repair.
科研通智能强力驱动
Strongly Powered by AbleSci AI