Synergetic effects of cation (K+) and anion (S2−)-doping on the structural integrity of Li/Mn-rich layered cathode material with considerable cyclability and high-rate capability for Li-ion batteries

兴奋剂 阴极 材料科学 锂(药物) 离子 自行车 过渡金属 复合数 电化学 容量损失 金属 化学工程 分析化学(期刊) 纳米技术 化学 电极 复合材料 冶金 物理化学 光电子学 有机化学 医学 考古 工程类 历史 内分泌学 催化作用
作者
Rakesh Saroha,Jung Sang Cho,Jou‐Hyeon Ahn
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:366: 137471-137471 被引量:46
标识
DOI:10.1016/j.electacta.2020.137471
摘要

Abstract Controlling structural deformations and rapid voltage decay during prolonged cycling has been considered the foremost challenge in improving the cycling and rate performance of Li-rich cathode materials for advanced lithium-ion batteries. In this work, we report an effective strategy for delaying structural variations and inhibiting transition metal migration by co-doping with a large-sized cation and anion. A Li-rich layered composite cathode, namely Li1.165Mn0.495Ni0.165Co0.165O2 (LMNCO; 0.5Li2MnO3-0.5LiMn0.33Ni0.33Co0.33O2) was prepared as the starting material, followed by synthesis of the optimized K+-doped L1.135K0.03Mn0.495Ni0.165Co0.165O2 (LKMNCO) and K+/S2−-doped L1.135K0.03Mn0.495Ni0.165Co0.165O2S0.02 (LKMNCOS) samples via a co-precipitation method. This co-doping strategy retarded structural deformations by significantly suppressing transition metal migration, as evidenced by ex-situ X-ray diffraction analysis at various cycle numbers for the sample cycled at 1.0 C-rate. The K+/S2−-doped sample, i.e., LKMNCOS, exhibited exceptional cycling stability and high-rate capability. Owing to the enhanced structural properties, the co-doped sample delivered an initial charge/discharge capacity of 341/295 mAh g−1 at 0.05 C, with the lowest irreversible capacity loss (ICL) compared to the pristine and K+-doped sample. A discharge capacity of ~129 mAh g−1 was also achieved even after 450 cycles at 1.0 C-rate, with the highest capacity retention ratio (65%) and lowest average capacity decay rate per cycle (~0.07%), suggesting excellent cycling performance. Overall, the results are prospectively beneficial for further development of advanced layered cathodes that undergo layered-to-spinel transformations and demonstrate the efficacy of co-doping for alleviating undesired structural defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
墨林完成签到,获得积分20
2秒前
2秒前
科研通AI2S应助yiguaer采纳,获得10
3秒前
小马甲应助Rickstein采纳,获得10
3秒前
故事的小黄花完成签到,获得积分10
3秒前
上官若男应助jzt12138采纳,获得10
3秒前
4秒前
自觉的帽子完成签到,获得积分10
4秒前
滕祥应助bin采纳,获得100
4秒前
4秒前
5秒前
rui发布了新的文献求助10
5秒前
5秒前
zhb发布了新的文献求助10
6秒前
桐桐应助好名字采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
lulu发布了新的文献求助10
9秒前
9秒前
韩豆乐发布了新的文献求助10
10秒前
南歌子完成签到 ,获得积分10
10秒前
11秒前
12秒前
无花果应助NOVEICE采纳,获得30
12秒前
12秒前
星落枝头发布了新的文献求助10
13秒前
平常心完成签到 ,获得积分10
13秒前
慕青应助Leon Lai采纳,获得10
14秒前
温暖的若之完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
ye发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
领导范儿应助LIUmm采纳,获得10
15秒前
BowieHuang应助liyiliyi117采纳,获得10
15秒前
泡芙完成签到,获得积分20
15秒前
费1发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667