Synergetic effects of cation (K+) and anion (S2−)-doping on the structural integrity of Li/Mn-rich layered cathode material with considerable cyclability and high-rate capability for Li-ion batteries

兴奋剂 阴极 材料科学 锂(药物) 离子 自行车 过渡金属 复合数 电化学 容量损失 金属 化学工程 分析化学(期刊) 纳米技术 化学 电极 复合材料 冶金 物理化学 光电子学 有机化学 催化作用 考古 内分泌学 工程类 历史 医学
作者
Rakesh Saroha,Jung Sang Cho,Jou‐Hyeon Ahn
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:366: 137471-137471 被引量:36
标识
DOI:10.1016/j.electacta.2020.137471
摘要

Abstract Controlling structural deformations and rapid voltage decay during prolonged cycling has been considered the foremost challenge in improving the cycling and rate performance of Li-rich cathode materials for advanced lithium-ion batteries. In this work, we report an effective strategy for delaying structural variations and inhibiting transition metal migration by co-doping with a large-sized cation and anion. A Li-rich layered composite cathode, namely Li1.165Mn0.495Ni0.165Co0.165O2 (LMNCO; 0.5Li2MnO3-0.5LiMn0.33Ni0.33Co0.33O2) was prepared as the starting material, followed by synthesis of the optimized K+-doped L1.135K0.03Mn0.495Ni0.165Co0.165O2 (LKMNCO) and K+/S2−-doped L1.135K0.03Mn0.495Ni0.165Co0.165O2S0.02 (LKMNCOS) samples via a co-precipitation method. This co-doping strategy retarded structural deformations by significantly suppressing transition metal migration, as evidenced by ex-situ X-ray diffraction analysis at various cycle numbers for the sample cycled at 1.0 C-rate. The K+/S2−-doped sample, i.e., LKMNCOS, exhibited exceptional cycling stability and high-rate capability. Owing to the enhanced structural properties, the co-doped sample delivered an initial charge/discharge capacity of 341/295 mAh g−1 at 0.05 C, with the lowest irreversible capacity loss (ICL) compared to the pristine and K+-doped sample. A discharge capacity of ~129 mAh g−1 was also achieved even after 450 cycles at 1.0 C-rate, with the highest capacity retention ratio (65%) and lowest average capacity decay rate per cycle (~0.07%), suggesting excellent cycling performance. Overall, the results are prospectively beneficial for further development of advanced layered cathodes that undergo layered-to-spinel transformations and demonstrate the efficacy of co-doping for alleviating undesired structural defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大个应助乐观的幼珊采纳,获得10
1秒前
1秒前
1秒前
1秒前
顺顺完成签到,获得积分10
3秒前
3秒前
小马甲应助a1oft采纳,获得10
3秒前
Keke完成签到,获得积分10
3秒前
4秒前
自然秋柳发布了新的文献求助10
4秒前
candy6663339完成签到,获得积分10
4秒前
weiwei完成签到,获得积分10
4秒前
大个应助苗条的山晴采纳,获得10
5秒前
努力发一区完成签到 ,获得积分0
5秒前
蒋时晏应助恶恶么v采纳,获得30
5秒前
6秒前
6秒前
gennp完成签到,获得积分10
6秒前
gg完成签到,获得积分10
6秒前
1111发布了新的文献求助10
6秒前
情怀应助wjh采纳,获得10
7秒前
7秒前
Hey关闭了Hey文献求助
7秒前
学渣向下完成签到,获得积分10
7秒前
咚咚咚发布了新的文献求助10
7秒前
8秒前
willen完成签到,获得积分10
8秒前
8秒前
奇怪的柒完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
文静的枫叶完成签到,获得积分10
10秒前
科目三应助神麒小雪采纳,获得10
10秒前
zzznznnn发布了新的文献求助10
11秒前
pbf发布了新的文献求助20
11秒前
科研通AI5应助有风采纳,获得10
12秒前
Lin完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759