兴奋剂
阴极
材料科学
锂(药物)
离子
自行车
过渡金属
复合数
电化学
容量损失
金属
化学工程
分析化学(期刊)
纳米技术
化学
电极
复合材料
冶金
物理化学
光电子学
有机化学
催化作用
考古
内分泌学
工程类
历史
医学
作者
Rakesh Saroha,Jung Sang Cho,Jou‐Hyeon Ahn
标识
DOI:10.1016/j.electacta.2020.137471
摘要
Abstract Controlling structural deformations and rapid voltage decay during prolonged cycling has been considered the foremost challenge in improving the cycling and rate performance of Li-rich cathode materials for advanced lithium-ion batteries. In this work, we report an effective strategy for delaying structural variations and inhibiting transition metal migration by co-doping with a large-sized cation and anion. A Li-rich layered composite cathode, namely Li1.165Mn0.495Ni0.165Co0.165O2 (LMNCO; 0.5Li2MnO3-0.5LiMn0.33Ni0.33Co0.33O2) was prepared as the starting material, followed by synthesis of the optimized K+-doped L1.135K0.03Mn0.495Ni0.165Co0.165O2 (LKMNCO) and K+/S2−-doped L1.135K0.03Mn0.495Ni0.165Co0.165O2S0.02 (LKMNCOS) samples via a co-precipitation method. This co-doping strategy retarded structural deformations by significantly suppressing transition metal migration, as evidenced by ex-situ X-ray diffraction analysis at various cycle numbers for the sample cycled at 1.0 C-rate. The K+/S2−-doped sample, i.e., LKMNCOS, exhibited exceptional cycling stability and high-rate capability. Owing to the enhanced structural properties, the co-doped sample delivered an initial charge/discharge capacity of 341/295 mAh g−1 at 0.05 C, with the lowest irreversible capacity loss (ICL) compared to the pristine and K+-doped sample. A discharge capacity of ~129 mAh g−1 was also achieved even after 450 cycles at 1.0 C-rate, with the highest capacity retention ratio (65%) and lowest average capacity decay rate per cycle (~0.07%), suggesting excellent cycling performance. Overall, the results are prospectively beneficial for further development of advanced layered cathodes that undergo layered-to-spinel transformations and demonstrate the efficacy of co-doping for alleviating undesired structural defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI