Learning Compact <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math> </inline-formula>-Space Representations for Multi-Shell Diffusion-Weighted MRI

球谐函数 离群值 数学 秩(图论) 正交基 代表(政治) 奇异值分解 信号(编程语言) 算法 数学分析 人工智能 计算机科学 物理 组合数学 量子力学 政治 程序设计语言 法学 政治学
作者
Daan Christiaens,Lucilio Cordero‐Grande,Jana Hutter,Anthony N. Price,Maria Deprez,Joseph V. Hajnal,Jacques‐Donald Tournier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (3): 834-843 被引量:22
标识
DOI:10.1109/tmi.2018.2873736
摘要

Diffusion-weighted MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in microstructure imaging and multi-tissue decomposition have sparked renewed attention in the radial b-value dependence of the signal. Applications in motion correction and outlier rejection therefore require a compact linear signal representation that extends over the radial as well as angular domain. Here, we introduce SHARD, a data-driven representation of the q-space signal based on spherical harmonics and a radial decomposition into orthonormal components. This representation provides a complete, orthogonal signal basis, tailored to the spherical geometry of q-space and calibrated to the data at hand. We demonstrate that the rank-reduced decomposition outperforms model-based alternatives in human brain data, whilst faithfully capturing the micro- and meso-structural information in the signal. Furthermore, we validate the potential of joint radial-spherical as compared to single-shell representations. As such, SHARD is optimally suited for applications that require low-rank signal predictions, such as motion correction and outlier rejection. Finally, we illustrate its application for the latter using outlier robust regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助wangli采纳,获得10
1秒前
zun完成签到,获得积分10
1秒前
1秒前
执着千筹发布了新的文献求助10
2秒前
烟花应助言希采纳,获得10
2秒前
酷波er应助科研辣鸡zzz采纳,获得10
5秒前
5秒前
田様应助wangdaniel采纳,获得10
6秒前
HENGDA完成签到,获得积分10
6秒前
zun发布了新的文献求助10
7秒前
bkagyin应助重要的诗珊采纳,获得10
7秒前
GH完成签到,获得积分10
8秒前
黑hei完成签到,获得积分10
9秒前
NickyLee完成签到,获得积分10
9秒前
tangzelun完成签到,获得积分10
9秒前
可爱的函函应助重要半兰采纳,获得10
9秒前
所所应助酷酷冷亦采纳,获得10
12秒前
lll完成签到,获得积分20
12秒前
ICE完成签到,获得积分10
13秒前
可爱的函函应助莉莉子采纳,获得10
13秒前
14秒前
twob完成签到,获得积分10
14秒前
门前大桥下完成签到,获得积分10
15秒前
16秒前
十一完成签到 ,获得积分10
17秒前
ICE发布了新的文献求助10
18秒前
Friday发布了新的文献求助10
18秒前
星辰发布了新的文献求助20
18秒前
今后应助执着千筹采纳,获得10
20秒前
21秒前
ZKK发布了新的文献求助10
21秒前
怕孤单的大米完成签到,获得积分10
21秒前
23421完成签到 ,获得积分10
21秒前
子车茗应助杨扬采纳,获得30
22秒前
22秒前
26秒前
8R60d8应助zhang采纳,获得10
27秒前
充电宝应助木头采纳,获得10
27秒前
FashionBoy应助ZKK采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306956
求助须知:如何正确求助?哪些是违规求助? 2940786
关于积分的说明 8498612
捐赠科研通 2614927
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663447
邀请新用户注册赠送积分活动 648297