化学
催化作用
X射线吸收光谱法
甲醇
羰基化
二甲醚
多相催化
选择性
无机化学
吸收光谱法
光化学
有机化学
一氧化碳
量子力学
物理
作者
Ji Qi,Jordan Finzel,Hossein Robatjazi,Mingjie Xu,Adam S. Hoffman,Simon R. Bare,Xiaoqing Pan,Phillip Christopher
摘要
Methanol carbonylation to acetic acid (AA) is a large-scale commodity chemical production process that requires homogeneous liquid-phase organometallic catalysts with corrosive halide-based cocatalysts to achieve high selectivity and activity. Here, we demonstrate a heterogeneous catalyst based on atomically dispersed rhenium (ReO4) active sites on an inert support (SiO2) for the halide-free, gas phase carbonylation of methanol to AA. Atomically dispersed ReO4 species and nanometer sized ReOx clusters were deposited on a high surface area (700 m2/g) inert SiO2 using triethanolamine as a dispersion promoter and characterized using aberration corrected scanning transmission electron microscopy (AC-STEM), UV–vis spectroscopy, and X-ray absorption spectroscopy (XAS). Reactivity measurements at atmospheric pressure with 30 mbar of methanol and CO (1:1 molar ratio) showed that bulk Re2O7 and ReOx clusters on SiO2 (formed at >10 wt %) were selective for dimethyl ether formation, while atomically dispersed ReO4 on SiO2 (formed at <10 wt %) exhibited stable (for 60 h) > 93% selectivity to AA with single pass conversion >60%. Kinetic analysis, in situ FTIR, and in situ XAS measurements suggest that the AA formation mechanism involves methanol activation on ReO4, followed by CO insertion into the terminal methyl species. Further, the introduction of ∼0.2 wt % of atomically dispersed Rh to 10 wt % atomically dispersed ReO4 on SiO2 resulted in >96% selectivity toward AA production at volumetric reaction rates comparable to homogeneous processes. This work introduces a new class of promising heterogeneous catalysts based on atomically dispersed ReO4 on inert supports for alcohol carbonylation.
科研通智能强力驱动
Strongly Powered by AbleSci AI