Phase Separation Behavior in Tough and Self-Healing Polyampholyte Hydrogels

自愈水凝胶 化学物理 化学工程 材料科学 分子间力 反离子 高分子化学 离子键合 聚合物 化学 相(物质) 复合材料 分子 有机化学 工程类 离子
作者
Kunpeng Cui,Yanan Ye,Tao Lin Sun,Chengtao Yu,Xueyu Li,Takayuki Kurokawa,Jian Ping Gong
出处
期刊:Macromolecules [American Chemical Society]
卷期号:53 (13): 5116-5126 被引量:70
标识
DOI:10.1021/acs.macromol.0c00577
摘要

Polyampholyte hydrogels (PA gels) are drawing great attention for their excellent mechanical properties including self-healing, high toughness, and fatigue resistance. These mechanical performances are found to be attributed to the hierarchical structure of the PA gels, consisting of reversible ionic bonds at the 1 nm scale, permanent polymer network at the 10 nm scale, and bicontinuous phase network at the 100 nm scale. In this work, we systematically studied the phase network formation of these gels aiming to answer the following three questions: (1) how the phase separation occurs? (2) what determines the phase structure? and (3) is this structure in thermodynamic equilibrium or not? Our results show that the phase separation occurs during dialysis of counterions from the gels and it is driven by the Coulombic and hydrophobic interactions. The phase size d0 and the number of aggregated chains in a unit cell of the phase structure n scale with the molecular weight of the partial chain between permanent effective cross-linking Meff as d0 ∼ Meff and n ∼ Meff2, respectively. A chemical cross-linker and topological entanglement suppress phase separation, while hydrophobic interaction favors phase separation. An intrinsic correlation between the polymer density difference (Δρ) between two phases and d0 is observed (Δρ ∼ d02) as a result of the competition between the driving force to induce phase separation and the resistance to suppress the phase separation. The phase-separated structure is metastable, which is locally trapped by strong intermolecular interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助大方嵩采纳,获得10
1秒前
英俊的铭应助大方嵩采纳,获得10
1秒前
李还好完成签到,获得积分10
2秒前
满意的柏柳完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
buno应助88采纳,获得10
5秒前
6秒前
三千世界完成签到,获得积分10
6秒前
6秒前
愉快的访旋完成签到,获得积分10
7秒前
Alpha完成签到,获得积分10
8秒前
大大发布了新的文献求助30
8秒前
翠翠发布了新的文献求助10
9秒前
半山发布了新的文献求助10
10秒前
10秒前
天天快乐应助CO2采纳,获得10
10秒前
隐形曼青应助junzilan采纳,获得10
11秒前
Dksido发布了新的文献求助10
11秒前
12秒前
思源应助卓哥采纳,获得10
12秒前
mysci完成签到,获得积分10
15秒前
16秒前
Quzhengkai发布了新的文献求助10
17秒前
17秒前
18秒前
落寞晓灵完成签到,获得积分10
18秒前
ORAzzz应助翠翠采纳,获得20
19秒前
zoe完成签到,获得积分10
19秒前
习习应助学术小白采纳,获得10
19秒前
20秒前
21秒前
tianny关注了科研通微信公众号
22秒前
22秒前
CO2发布了新的文献求助10
22秒前
桐桐应助zhangscience采纳,获得10
23秒前
求助发布了新的文献求助10
24秒前
buno应助zoe采纳,获得10
25秒前
junzilan发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808