The utilization of solid electrolyte (SE) to suppress lithium (Li) dendrites is promising but still far from satisfactory due to the inhomogeneous Li plating/stripping. Here, we demonstrated a novel strategy to inhibit Li dendrites via regulating Li-ion flux in SE by using vertically aligned channels. The ion-insulating walls facilitated uniform distribution of Li-ion flux through the channels, leading to a homogeneous Li deposition, thus alleviating Li dendrite formation. As a result, symmetric cells with this SE exhibited excellent long-term stability (1000 h) against Li metal. In addition, Li4Ti5O12 (LTO)/Li cell with the developed SE achieved good battery performance over 100 cycles. The mechanism for dendrite suppression was further investigated by phase-field simulation. This work provides a novel strategy by manipulating uniform Li-ion flux to fabricate SE to inhibit Li dendrites and facilitates the development of high-performance rechargeable Li batteries.