Faster Deliveries and Smarter Order Assignments for an On-Demand Meal Delivery Platform

订单(交换) 餐食 计算机科学 业务 医学 财务 内科学
作者
Weipu Mao,Liu Ming,Ying Rong,Christopher S. Tang,Huan Zheng
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:12
标识
DOI:10.2139/ssrn.3469015
摘要

Academic/Practical Relevance: Our intent is to identify the underlying factors and develop an assignment policy that can help an on-demand meal delivery service platform to grow. Methodology: By analyzing transactional data obtained from an online meal delivery platform in Hangzhou (China) over a two-month period in 2015, we examine the impact of meal delivery performance on a customer's future orders. Through a simulation study, we illustrate the importance of incorporating our empirical results into the development of a smarter order assignment policy. Results: We find empirical evidence that an delivery'' is positively correlated with customer retention: a 10-minute earlier delivery is associated with an increase of one per month from each customer. However, we find that the negative effect on future orders associated with deliveries'' is much stronger than the positive effect associated with deliveries. Moreover, we show empirically that a driver's individual local area knowledge and prior delivery experience can reduce late deliveries significantly. Finally, through a simulation study, we illustrate how one can incorporate our empirical results in the development of an assignment policy that can help a platform to grow its business through customer retention. Managerial Implications: Our empirical results and our simulation study suggest that to increase future customer orders, an on-demand service platform should address the issues arising from both the supply side (i.e., driver's local area knowledge and delivery experience) and the demand side (i.e., asymmetric impacts of early and late deliveries on future customer orders) into their operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万有引力发布了新的文献求助10
刚刚
1秒前
丰富天思发布了新的文献求助10
1秒前
小李在哪儿完成签到 ,获得积分10
1秒前
trn完成签到 ,获得积分10
2秒前
3秒前
玖梦发布了新的文献求助10
3秒前
4秒前
wish发布了新的文献求助10
4秒前
weiyf15完成签到 ,获得积分10
5秒前
三月肖发布了新的文献求助10
5秒前
sjh完成签到,获得积分10
5秒前
6秒前
6秒前
令狐初之完成签到,获得积分10
6秒前
科研通AI2S应助陶醉的芷云采纳,获得10
7秒前
小金星星完成签到 ,获得积分10
7秒前
7秒前
慕青应助朱一龙采纳,获得10
7秒前
8秒前
徐凤年完成签到,获得积分10
8秒前
wanci应助木白采纳,获得10
9秒前
9秒前
呆萌幼晴完成签到,获得积分10
10秒前
10秒前
852应助Anonymity采纳,获得10
11秒前
菜鸟完成签到,获得积分10
11秒前
sdsd发布了新的文献求助10
11秒前
thomas发布了新的文献求助10
11秒前
12秒前
emma发布了新的文献求助10
12秒前
申小萌完成签到,获得积分10
12秒前
2022cyf发布了新的文献求助10
13秒前
星星虫发布了新的文献求助10
13秒前
Glngar应助虾条采纳,获得10
13秒前
dzvd完成签到 ,获得积分10
14秒前
silence63完成签到 ,获得积分10
14秒前
菜鸟发布了新的文献求助10
15秒前
刚好夏天完成签到 ,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847