Faster Deliveries and Smarter Order Assignments for an On-Demand Meal Delivery Platform

订单(交换) 餐食 计算机科学 业务 医学 财务 内科学
作者
Wenzheng Mao,Liu Ming,Ying Rong,Christopher S. Tang,Huan Zheng
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:46
标识
DOI:10.2139/ssrn.3469015
摘要

Academic/Practical Relevance: Our intent is to identify the underlying factors and develop an order assignment policy that can help an on-demand meal delivery service platform to grow.Methodology: By analyzing transactional data obtained from an online meal delivery platform in Hangzhou (China) over a two-month period in 2015, we examine the impact of meal delivery performance on a customer's future orders. Through a simulation study, we illustrate the importance of incorporating our empirical results into the development of a smarter "order assignment policy". Results: We find empirical evidence that an "early delivery'' is positively correlated with customer retention: a 10-minute earlier delivery is associated with an increase of one order per month from each customer. However, we find that the negative effect on future orders associated with "late deliveries'' is much stronger than the positive effect associated with "early deliveries". Moreover, we show empirically that a driver's individual local area knowledge and prior delivery experience can reduce late deliveries significantly. Finally, through a simulation study, we illustrate how one can incorporate our empirical results in the development of an order assignment policy that can help a platform to grow its business through customer retention. Managerial Implications: Our empirical results and our simulation study suggest that to increase future customer orders, an on-demand service platform should address the issues arising from both the supply side (i.e., driver's local area knowledge and delivery experience) and the demand side (i.e., asymmetric impacts of early and late deliveries on future customer orders) into their operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余九完成签到 ,获得积分10
刚刚
1秒前
动听的海亦完成签到,获得积分10
1秒前
wwy应助阿馨采纳,获得30
2秒前
芒果豆豆发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
CMUSK完成签到 ,获得积分10
2秒前
3秒前
zhou发布了新的文献求助10
3秒前
光亮的秋白完成签到 ,获得积分10
3秒前
爆米花应助张远最帅采纳,获得10
3秒前
3秒前
dbb发布了新的文献求助10
4秒前
4秒前
YOLO发布了新的文献求助10
4秒前
5秒前
杨旭完成签到,获得积分10
5秒前
完美世界应助无聊的小洁采纳,获得10
6秒前
6秒前
wifi发布了新的文献求助10
6秒前
FashionBoy应助Daisylee采纳,获得10
7秒前
李卓发布了新的文献求助10
7秒前
罐罐儿应助lliuqiq采纳,获得10
7秒前
着急的洋葱完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Lexi完成签到 ,获得积分10
8秒前
Eason王发布了新的文献求助10
8秒前
张真牛发布了新的文献求助10
9秒前
稳重香芦发布了新的文献求助10
9秒前
友好访蕊发布了新的文献求助10
9秒前
9秒前
清秋1001发布了新的文献求助20
10秒前
万能图书馆应助南风采纳,获得10
10秒前
清脆晓曼完成签到,获得积分10
10秒前
gilderf完成签到,获得积分10
11秒前
大个应助明天会更美好采纳,获得10
11秒前
yangbinsci0827完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444