亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Faster Deliveries and Smarter Order Assignments for an On-Demand Meal Delivery Platform

订单(交换) 餐食 计算机科学 业务 医学 财务 内科学
作者
Wenzheng Mao,Liu Ming,Ying Rong,Christopher S. Tang,Huan Zheng
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:44
标识
DOI:10.2139/ssrn.3469015
摘要

Academic/Practical Relevance: Our intent is to identify the underlying factors and develop an order assignment policy that can help an on-demand meal delivery service platform to grow.Methodology: By analyzing transactional data obtained from an online meal delivery platform in Hangzhou (China) over a two-month period in 2015, we examine the impact of meal delivery performance on a customer's future orders. Through a simulation study, we illustrate the importance of incorporating our empirical results into the development of a smarter "order assignment policy". Results: We find empirical evidence that an "early delivery'' is positively correlated with customer retention: a 10-minute earlier delivery is associated with an increase of one order per month from each customer. However, we find that the negative effect on future orders associated with "late deliveries'' is much stronger than the positive effect associated with "early deliveries". Moreover, we show empirically that a driver's individual local area knowledge and prior delivery experience can reduce late deliveries significantly. Finally, through a simulation study, we illustrate how one can incorporate our empirical results in the development of an order assignment policy that can help a platform to grow its business through customer retention. Managerial Implications: Our empirical results and our simulation study suggest that to increase future customer orders, an on-demand service platform should address the issues arising from both the supply side (i.e., driver's local area knowledge and delivery experience) and the demand side (i.e., asymmetric impacts of early and late deliveries on future customer orders) into their operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星尘0314发布了新的文献求助10
2秒前
37秒前
43秒前
Akim应助星尘0314采纳,获得10
54秒前
ZJY完成签到 ,获得积分10
54秒前
科研小南完成签到 ,获得积分10
58秒前
Jason完成签到,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
ZanE完成签到,获得积分10
1分钟前
Jiang完成签到,获得积分20
1分钟前
Jason发布了新的文献求助10
1分钟前
谦让的鱼完成签到,获得积分10
1分钟前
catherine完成签到,获得积分10
1分钟前
大个应助Pursork采纳,获得10
2分钟前
PeterDeng完成签到,获得积分10
2分钟前
领导范儿应助fveie采纳,获得10
2分钟前
浮游应助今年花生去年红采纳,获得10
2分钟前
2分钟前
Pursork发布了新的文献求助10
2分钟前
科目三应助小圭采纳,获得10
2分钟前
小蘑菇应助朴素难敌采纳,获得30
2分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助转转王转转采纳,获得10
3分钟前
GRG完成签到 ,获得积分0
3分钟前
Wj发布了新的文献求助10
3分钟前
所所应助Wj采纳,获得10
4分钟前
4分钟前
朴素难敌发布了新的文献求助30
4分钟前
5分钟前
usora发布了新的文献求助10
5分钟前
usora完成签到,获得积分10
5分钟前
5分钟前
Auralis完成签到 ,获得积分10
5分钟前
朴素难敌完成签到,获得积分10
5分钟前
6分钟前
丸子完成签到 ,获得积分10
6分钟前
6分钟前
五五完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459158
求助须知:如何正确求助?哪些是违规求助? 4564898
关于积分的说明 14297299
捐赠科研通 4489983
什么是DOI,文献DOI怎么找? 2459484
邀请新用户注册赠送积分活动 1449127
关于科研通互助平台的介绍 1424596