超级电容器
电容
材料科学
化学工程
电化学
电流密度
石墨烯
退火(玻璃)
电极
氧化物
功率密度
复合数
储能
纳米复合材料
电解质
纳米技术
复合材料
冶金
化学
物理
工程类
物理化学
功率(物理)
量子力学
作者
Mingsheng Xu,Mingze Sun,Sajid Ur Rehman,Kangkang Ge,Xiaolong Hu,Haizhen Ding,Jichang Liu,Hong Bi
标识
DOI:10.1016/j.cclet.2020.12.011
摘要
A series of interconnected CoO–ZnO/rGO supported on Ni foam samples were prepared by in-situ growth via hydrothermal synthesis and subsequent annealing treatment. The optimized sample exhibits excellent electrochemical performances with a higher specific capacitance of 1951.8 F/g (216.9 mAh/g) at a current density of 1 A/g with a good rate capability. The CoO–ZnO/rGO based hybrid supercacitor delivers a high energy density up to 45.9 Wh/kg at a power density of 800 W/kg with a decent cycling stability (90.1% capacitance retention after 5000 cycles). The high specific capacitance along with good cycling stability are crucial for practical applications of supercapacitors, which always demands high-performance and stable electrode materials. In this work, we report a series of ternary composites of CoO-ZnO with different fractions of reduced graphene oxide (rGO) synthesized by in-situ growth on nickel foam, named as CZG-1, 2 and 3, respectively. This sort of binder-free electrodes presents excellent electrochemical properties as well as large capacitance due to their low electrical resistance and high oxygen vacancies. Particularly, the sample of CZG-2 (CoO-ZnO/rGO 20 mg) in a nanoreticular structure shows the best electrochemical performance with a maximum specific capacitance of 1951.8 F/g (216.9 mAh/g) at a current intensity of 1 A/g. The CZG-2-based hybrid supercapacitor delivers a high energy density up to 45.9 Wh/kg at a high power density of 800 W/kg, and kept the capacitance retention of 90.1% over 5000 charge-discharge cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI