An Extended Theory of Planned Behavior for the Modelling of Chinese Secondary School Students’ Intention to Learn Artificial Intelligence

心理学 操作化 验证性因素分析 结构方程建模 构造(python库) 计划行为理论 控制(管理) 社会心理学 数学教育 应用心理学 人工智能 计算机科学 认识论 机器学习 哲学 程序设计语言
作者
Ching Sing Chai,Xingwei Wang,Chang Xu
出处
期刊:Mathematics [MDPI AG]
卷期号:8 (11): 2089-2089 被引量:85
标识
DOI:10.3390/math8112089
摘要

Artificial Intelligence (AI) is currently changing how people live and work. Its importance has prompted educators to begin teaching AI in secondary schools. This study examined how Chinese secondary school students’ intention to learn AI were associated with eight other relevant psychological factors. Five hundred and forty-five secondary school students who have completed at least one cycle of AI course were recruited to participate in this study. Based on the theory of planned behavior, the students’ AI literacy, subjective norms, and anxiety were identified as background factors. These background factors were hypothesized to influence the students’ attitudes towards AI, their perceived behavioral control, and their intention to learn AI. To provide more nuanced understanding, the students’ attitude towards AI was further delineated as constituted by their perception of the usefulness of AI, the potential of AI technology to promote social good, and their attitude towards using AI technology. Similarly, the perceived behavioral control was operationalized as students’ confidence towards learning AI knowledge and optimistic outlook of an AI infused world. Relationships between the factors were theoretically illustrated as a model that depicts how students’ intention to learn AI was constituted. Two research questions were then formulated. Confirmatory factor analysis was employed to validate that multi-factor survey, followed by structural equational modelling to ascertain the significant associations between the factors. The confirmatory factor analysis supports the construct validity of the questionnaire. Twenty-five out of the thirty-three hypotheses were supported through structural equation modelling. The model helps researchers and educators to understand the factors that shape students’ intention to learn AI. These factors should be considered for the design of AI curriculum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助行宇采纳,获得10
刚刚
dajin完成签到,获得积分10
1秒前
1秒前
搜集达人应助练习者采纳,获得10
2秒前
2秒前
3秒前
刘刘溜完成签到 ,获得积分10
4秒前
所所应助yujd采纳,获得30
4秒前
科研通AI2S应助于瑜与余采纳,获得10
6秒前
6秒前
顾矜应助安详鸿采纳,获得30
6秒前
7秒前
多情翠丝发布了新的文献求助10
7秒前
万能图书馆应助zero桥采纳,获得10
7秒前
夜猫放羊完成签到,获得积分10
8秒前
8秒前
SPF发布了新的文献求助30
10秒前
10秒前
10秒前
夜猫放羊发布了新的文献求助20
11秒前
12秒前
jzmupyj完成签到,获得积分10
13秒前
智挂东南枝完成签到,获得积分10
13秒前
13秒前
spinning发布了新的文献求助10
13秒前
13秒前
丁一完成签到,获得积分10
13秒前
eugene_sysu发布了新的文献求助10
14秒前
14秒前
乐观若之发布了新的文献求助20
15秒前
16秒前
祭音发布了新的文献求助10
16秒前
AlvinCZY发布了新的文献求助10
17秒前
17秒前
17秒前
勤劳野狼发布了新的文献求助10
18秒前
搞怪烨伟发布了新的文献求助10
18秒前
惊鸿客发布了新的文献求助20
20秒前
橙鹿鹿的猫完成签到,获得积分10
21秒前
eureka发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156090
求助须知:如何正确求助?哪些是违规求助? 2807496
关于积分的说明 7873356
捐赠科研通 2465814
什么是DOI,文献DOI怎么找? 1312446
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905