An Extended Theory of Planned Behavior for the Modelling of Chinese Secondary School Students’ Intention to Learn Artificial Intelligence

心理学 操作化 验证性因素分析 结构方程建模 构造(python库) 计划行为理论 控制(管理) 社会心理学 数学教育 应用心理学 人工智能 计算机科学 认识论 机器学习 哲学 程序设计语言
作者
Ching Sing Chai,Xingwei Wang,Chang Xu
出处
期刊:Mathematics [MDPI AG]
卷期号:8 (11): 2089-2089 被引量:85
标识
DOI:10.3390/math8112089
摘要

Artificial Intelligence (AI) is currently changing how people live and work. Its importance has prompted educators to begin teaching AI in secondary schools. This study examined how Chinese secondary school students’ intention to learn AI were associated with eight other relevant psychological factors. Five hundred and forty-five secondary school students who have completed at least one cycle of AI course were recruited to participate in this study. Based on the theory of planned behavior, the students’ AI literacy, subjective norms, and anxiety were identified as background factors. These background factors were hypothesized to influence the students’ attitudes towards AI, their perceived behavioral control, and their intention to learn AI. To provide more nuanced understanding, the students’ attitude towards AI was further delineated as constituted by their perception of the usefulness of AI, the potential of AI technology to promote social good, and their attitude towards using AI technology. Similarly, the perceived behavioral control was operationalized as students’ confidence towards learning AI knowledge and optimistic outlook of an AI infused world. Relationships between the factors were theoretically illustrated as a model that depicts how students’ intention to learn AI was constituted. Two research questions were then formulated. Confirmatory factor analysis was employed to validate that multi-factor survey, followed by structural equational modelling to ascertain the significant associations between the factors. The confirmatory factor analysis supports the construct validity of the questionnaire. Twenty-five out of the thirty-three hypotheses were supported through structural equation modelling. The model helps researchers and educators to understand the factors that shape students’ intention to learn AI. These factors should be considered for the design of AI curriculum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助YY采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
HC完成签到 ,获得积分10
4秒前
姚姚的赵赵完成签到,获得积分10
4秒前
JamesPei应助大豪子采纳,获得30
5秒前
jy发布了新的文献求助10
5秒前
5秒前
陆靖易发布了新的文献求助10
5秒前
LQW完成签到,获得积分20
6秒前
7秒前
plant完成签到,获得积分10
7秒前
lyt完成签到,获得积分10
7秒前
8秒前
9秒前
敏感网络完成签到,获得积分20
10秒前
kh453发布了新的文献求助10
10秒前
10秒前
子爵木完成签到 ,获得积分10
10秒前
HC发布了新的文献求助30
11秒前
无限鞅发布了新的文献求助10
11秒前
SherlockLiu完成签到,获得积分20
11秒前
12秒前
吴岳发布了新的文献求助10
13秒前
陆靖易完成签到,获得积分10
13秒前
15秒前
Bella完成签到 ,获得积分10
15秒前
yhl发布了新的文献求助10
16秒前
17秒前
震动的乐天完成签到,获得积分10
18秒前
19秒前
20秒前
Hello应助xuanxuan采纳,获得10
21秒前
村长热爱美丽完成签到 ,获得积分10
21秒前
一衣完成签到,获得积分20
21秒前
21秒前
23秒前
明理世倌发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808