An Extended Theory of Planned Behavior for the Modelling of Chinese Secondary School Students’ Intention to Learn Artificial Intelligence

心理学 操作化 验证性因素分析 结构方程建模 构造(python库) 计划行为理论 控制(管理) 社会心理学 数学教育 结构效度 应用心理学 发展心理学 心理测量学 人工智能 计算机科学 认识论 机器学习 哲学 程序设计语言
作者
Ching Sing Chai,Xingwei Wang,Chang Xu
出处
期刊:Mathematics [MDPI AG]
卷期号:8 (11): 2089-2089 被引量:144
标识
DOI:10.3390/math8112089
摘要

Artificial Intelligence (AI) is currently changing how people live and work. Its importance has prompted educators to begin teaching AI in secondary schools. This study examined how Chinese secondary school students’ intention to learn AI were associated with eight other relevant psychological factors. Five hundred and forty-five secondary school students who have completed at least one cycle of AI course were recruited to participate in this study. Based on the theory of planned behavior, the students’ AI literacy, subjective norms, and anxiety were identified as background factors. These background factors were hypothesized to influence the students’ attitudes towards AI, their perceived behavioral control, and their intention to learn AI. To provide more nuanced understanding, the students’ attitude towards AI was further delineated as constituted by their perception of the usefulness of AI, the potential of AI technology to promote social good, and their attitude towards using AI technology. Similarly, the perceived behavioral control was operationalized as students’ confidence towards learning AI knowledge and optimistic outlook of an AI infused world. Relationships between the factors were theoretically illustrated as a model that depicts how students’ intention to learn AI was constituted. Two research questions were then formulated. Confirmatory factor analysis was employed to validate that multi-factor survey, followed by structural equational modelling to ascertain the significant associations between the factors. The confirmatory factor analysis supports the construct validity of the questionnaire. Twenty-five out of the thirty-three hypotheses were supported through structural equation modelling. The model helps researchers and educators to understand the factors that shape students’ intention to learn AI. These factors should be considered for the design of AI curriculum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding7862完成签到,获得积分10
1秒前
雪儿完成签到 ,获得积分10
2秒前
kelly完成签到,获得积分10
2秒前
Aoia完成签到,获得积分10
3秒前
杨羕完成签到,获得积分10
3秒前
桐桐应助神一样采纳,获得30
3秒前
4秒前
俺村俺最牛完成签到 ,获得积分10
4秒前
wanlino1完成签到,获得积分10
4秒前
6秒前
文献一搜就出完成签到,获得积分10
8秒前
仙女完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
guard发布了新的文献求助10
9秒前
丘比特应助超级的语儿采纳,获得10
9秒前
robin_1217完成签到,获得积分10
10秒前
poly完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
吴荣方发布了新的文献求助10
11秒前
13秒前
尤瑟夫完成签到 ,获得积分10
15秒前
19秒前
19秒前
哎健身完成签到 ,获得积分10
20秒前
aniu完成签到,获得积分10
20秒前
真找不到完成签到,获得积分10
21秒前
Chri_完成签到,获得积分10
21秒前
RichieXU完成签到,获得积分10
21秒前
abbytang完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
燕燕完成签到,获得积分10
24秒前
乐乐完成签到,获得积分10
24秒前
小胖wwwww完成签到 ,获得积分10
25秒前
25秒前
26秒前
燕子完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
cookiezhu01完成签到 ,获得积分10
27秒前
儒雅黑裤完成签到,获得积分10
27秒前
caisongliang完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664787
求助须知:如何正确求助?哪些是违规求助? 4869912
关于积分的说明 15108740
捐赠科研通 4823528
什么是DOI,文献DOI怎么找? 2582406
邀请新用户注册赠送积分活动 1536443
关于科研通互助平台的介绍 1494934