化学
色谱法
两性离子
洗脱
离子色谱法
高效液相色谱法
二维色谱法
超临界流体色谱法
离子交换
烷基苯
离子
有机化学
分子
苯
作者
Denise Wolrab,Peter Frühauf,Natalie Kolderová,Michal Kohout
标识
DOI:10.1016/j.chroma.2020.461751
摘要
A set of new mixed-mode ion-exchange stationary phases is presented. The backbone of organic selectors is formed by a linear hydrocarbon chain, which is divided into two parts of various lengths by a heteroatom (oxygen or nitrogen). In all studied cases, there is a sulfonic acid moiety as the terminal group. Therefore, selectors bearing oxygen gave rise to strong cation ion-exchange stationary phases, while selectors with an embedded nitrogen atom (inducing a weak anion exchange capacity) were used to create zwitterion ion-exchange stationary phases. The new mixed-mode stationary phases were chromatographically evaluated in high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) using isocratic elution conditions to disclose their chromatographic potential. In HPLC mode, aqueous-rich reversed phase chromatography, acetonitrile-rich hydrophilic interaction liquid chromatography and methanolic ion-exchange chromatography mobile phases were employed. In these chromatographic modes, retention factors and selectivity values for a test set of basic and zwitterionic analytes were determined. The results were compared and principal component analysis for each chromatographic mode was performed. For all chromatographic modes, the component 1 in the principal component analysis reflected the elution order. The application of different mobile phases on a particular column resulted not only in variation in retention, but also in modified selectivity, and different elution order of the analytes. The orthogonality of the elution order depending on the employed mobile phase conditions was especially reflected for structurally closely related analytes, such as melatonin and N-acetyl-serotonin, tryptamine and serotonin or noradrenalin and octopamine. However, ion-exchange interactions remain the main driving force for retention. From all investigated stationary phases, the SCX 2 (C5-linker and C4-spacer) seems to be the best choice for the separation of basic analytes using different mobile phase conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI