Wayside acoustic detection of train bearings based on an enhanced spline-kernelled chirplet transform

声学 计算机科学 样条插值 信号(编程语言) 残余物 算法 电子工程 工程类 计算机视觉 双线性插值 物理 程序设计语言
作者
Dingcheng Zhang,Mani Entezami,Edward Stewart,Clive Roberts,Dejie Yu,Yaguo Lei
出处
期刊:Journal of Sound and Vibration [Elsevier BV]
卷期号:480: 115401-115401 被引量:21
标识
DOI:10.1016/j.jsv.2020.115401
摘要

Wayside acoustic detection is an effective and economical technology for fault diagnosis of train bearings. However, the technology has two main problems: Doppler Effect distortion, and high-level noise interference particularly harmonic interference. To solve both problems, a novel wayside acoustic detection scheme using an enhanced spline-kernelled chirplet transform (ESCT) method is proposed in this paper. Combining the spline-kernelled chirplet transform, built-in criterions, and a variable digital filter, the ESCT method is proposed for use in the extraction of the main harmonic components and corresponding instantaneous frequencies (IFs). This way, the residual signal, free of harmonic interference, can be obtained by excluding harmonic components in the raw acoustic signal using the ESCT method. The excluded harmonic components can be used to obtain motion parameters of the test train using a new estimation method. A resampling time vector can be constructed based on the estimated motion parameters. Doppler Effect in the residual signal can be reduced by using the time-domain interpolation resampling (TIR) method. Finally, spectral kurtosis (SK) is applied to extract train bearing fault features from the Doppler-free signal. By observing the Hilbert envelope spectrum of the filtered signal, train bearing faults can be detected. Comparing this approach with other schemes, the proposed solution requires comparatively little prior information and is easily applied to existing detection systems. The simulation and field experiments were conducted in this paper and results verified the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MrPao发布了新的文献求助10
刚刚
William应助飞舞的飞屋采纳,获得10
刚刚
linlin完成签到,获得积分10
刚刚
xmmm完成签到,获得积分10
1秒前
1秒前
1秒前
FashionBoy应助动人的中心采纳,获得10
2秒前
张小北发布了新的文献求助10
2秒前
2秒前
CipherSage应助机智的乐驹采纳,获得10
2秒前
ding应助烂漫的沂采纳,获得10
2秒前
2秒前
云術发布了新的文献求助10
3秒前
S77发布了新的文献求助10
3秒前
4秒前
隐形曼青应助XY采纳,获得10
4秒前
5秒前
zimu012发布了新的文献求助10
5秒前
inrain完成签到,获得积分10
5秒前
科研通AI5应助Sun采纳,获得10
6秒前
xiaoyu1完成签到,获得积分20
7秒前
菠萝吹雪完成签到,获得积分10
7秒前
8秒前
申申发布了新的文献求助10
8秒前
8秒前
所所应助guan采纳,获得10
9秒前
cc268完成签到 ,获得积分10
9秒前
鹿茸与共发布了新的文献求助10
10秒前
科研通AI5应助高大山彤采纳,获得10
11秒前
iko完成签到,获得积分10
11秒前
11秒前
斯文败类应助GentleFade采纳,获得10
11秒前
pluto应助独特一刀采纳,获得20
12秒前
wisdom应助蟹蟹采纳,获得10
12秒前
传奇3应助nocap666采纳,获得10
13秒前
13秒前
6789发布了新的文献求助10
13秒前
坚强桐发布了新的文献求助10
13秒前
CodeCraft应助WeiBao采纳,获得10
14秒前
云術完成签到,获得积分10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744718
求助须知:如何正确求助?哪些是违规求助? 3287712
关于积分的说明 10054740
捐赠科研通 3003914
什么是DOI,文献DOI怎么找? 1649258
邀请新用户注册赠送积分活动 785217
科研通“疑难数据库(出版商)”最低求助积分说明 750960