Enhancing the mechanical performance of PA6 based composites by altering their crystallization and rheological behavior via in-situ generated PPS nanofibrils

材料科学 复合材料 极限抗拉强度 艾氏冲击强度试验 应变硬化指数 韧性 聚酰胺 缩颈 复合数 流变学 纳米复合材料
作者
Mayesha Binte Mahmud,Andrew Anstey,Vahid Shaayegan,Patrick Lee,Chul B. Park
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:195: 108067-108067 被引量:66
标识
DOI:10.1016/j.compositesb.2020.108067
摘要

Polyamide 6 (PA6) is a popular engineering thermoplastic due to its impressive mechanical and wear resistance properties. However, its poor notched impact performance at room temperature limits its application. Although melt blending with elastomeric materials can improve PA6's toughness, this comes at the expense of its tensile strength and stiffness. In this work, a unique in-situ fibrillation technique was demonstrated to improve the impact performance of PA6 without sacrificing its stiffness. PA6-based in-situ nanofibrillar composites, containing polyphenylene sulfide (PPS) nanofibrillar domains with an average diameter around 60 nm, were produced combining melt compounding and hot stretching. Then, the effect of this fibrillar network on the mechanical properties of PA6 composites was investigated under uniaxial tensile deformation and notched impact. Results indicated no decrease in the tensile modulus in the presence of PPS nanofibrils; however, the nanofibrillar network did induce a significant difference in the stress-strain curves with the evolution of multiple necking and strain hardening. This behavior was explained by the formation of transcrystalline structures and a small crystal size in the presence of the fibril network. The evolution of multiple necking and strain hardening was correlated with the improved elasticity of the nanofibrillar composite through rheological analysis as well. Notched Izod impact tests on the composites demonstrated that 3 wt% PPS nanofibrils improved the impact strength by ~85% compared to neat PA6. Overall, this study gives insight into the design of PA6 composites with tuned impact strength and stiffness through a simple and scalable production method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ey完成签到,获得积分10
刚刚
2秒前
Akim应助LL采纳,获得10
2秒前
李健的小迷弟应助汎影采纳,获得10
3秒前
3秒前
雍州小铁匠完成签到 ,获得积分10
3秒前
华清引完成签到,获得积分10
4秒前
皮皮完成签到 ,获得积分10
4秒前
4秒前
成就寒珊发布了新的文献求助10
5秒前
Suta完成签到,获得积分10
5秒前
Akim应助洁净白容采纳,获得10
5秒前
6秒前
Motorhead发布了新的文献求助10
6秒前
苇一发布了新的文献求助10
6秒前
6秒前
bkagyin应助超文献采纳,获得10
6秒前
飒飒完成签到,获得积分20
6秒前
6秒前
7秒前
搜集达人应助meikoo采纳,获得10
7秒前
科研通AI5应助黑九采纳,获得10
7秒前
8秒前
小冉完成签到,获得积分10
8秒前
8秒前
春夏秋冬发布了新的文献求助10
9秒前
zz发布了新的文献求助10
9秒前
9秒前
sseekker发布了新的文献求助10
9秒前
不配.应助sissie采纳,获得10
10秒前
AlvinCZY发布了新的文献求助10
10秒前
orixero应助kuaar采纳,获得10
10秒前
10秒前
LLLL完成签到,获得积分10
11秒前
bkagyin应助sober采纳,获得10
11秒前
苦海完成签到,获得积分10
11秒前
羞涩的虔完成签到,获得积分10
11秒前
12秒前
Notearsss发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488230
求助须知:如何正确求助?哪些是违规求助? 3075979
关于积分的说明 9143072
捐赠科研通 2768222
什么是DOI,文献DOI怎么找? 1519129
邀请新用户注册赠送积分活动 703524
科研通“疑难数据库(出版商)”最低求助积分说明 701922