From mechanical resilience to active material properties in biopolymer networks

生物高聚物 活性物质 弹性(材料科学) 细胞外基质 弹性(物理) 纳米技术 互连性 生命系统 材料科学 计算机科学 生化工程 聚合物 化学 人工智能 工程类 生物 复合材料 细胞生物学 生物化学
作者
Federica Burla,Yuval Mulla,Bart E. Vos,Anders Aufderhorst-Roberts,Gijsje H. Koenderink
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:1 (4): 249-263 被引量:159
标识
DOI:10.1038/s42254-019-0036-4
摘要

The cells and tissues that make up our body manage contradictory mechanical demands. It is crucial for their survival to be able to withstand large mechanical loads, but it is equally crucial for them to produce forces and actively change shape during biological processes such as tissue growth and repair. The mechanics of cells and tissues is determined by scaffolds of protein polymers known as the cytoskeleton and the extracellular matrix, respectively. Experiments on model systems reconstituted from purified components combined with polymer physics concepts have already uncovered some of the mechanisms that underlie the paradoxical mechanics of living matter. Initial work focused on explaining universal features, such as the nonlinear elasticity of cells and tissues, in terms of polymer network models. However, there is a growing recognition that living matter exhibits many advanced mechanical functionalities that are not captured by these coarse-grained theories. Here, we review recent experimental and theoretical insights that reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of biopolymers confer resilience combined with the ability to adapt and self-heal. These physical concepts increase our understanding of cell and tissue biology and provide inspiration for advanced synthetic materials. Biopolymer networks provide mechanical integrity and enable active deformation of cells and tissues. Here, we review recent experimental and theoretical studies of the mechanical behaviour of biopolymer networks with a focus on reductionist approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
乎乎完成签到 ,获得积分10
1秒前
3秒前
3秒前
咸鱼发布了新的文献求助10
4秒前
李存发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
6秒前
8R60d8完成签到,获得积分0
6秒前
SJJ应助满意青筠采纳,获得10
7秒前
小波波波完成签到,获得积分10
8秒前
9秒前
飞飞鱼完成签到,获得积分10
9秒前
水云身完成签到,获得积分10
9秒前
Csy发布了新的文献求助20
9秒前
adamchris发布了新的文献求助30
10秒前
邹友亮完成签到,获得积分10
11秒前
55发布了新的文献求助10
12秒前
13秒前
13秒前
鱼莉完成签到,获得积分10
13秒前
14秒前
华仔应助李存采纳,获得10
16秒前
16秒前
17秒前
18秒前
李健的小迷弟应助Eric采纳,获得10
19秒前
CCC发布了新的文献求助10
21秒前
汉堡包应助cara33采纳,获得10
23秒前
脑洞疼应助lumei661314采纳,获得10
23秒前
24秒前
今后应助忧郁的鱿鱼采纳,获得10
24秒前
25秒前
25秒前
生动友容发布了新的文献求助10
25秒前
露露露完成签到,获得积分10
26秒前
27秒前
ppwq完成签到 ,获得积分10
27秒前
华仔应助seven采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599407
求助须知:如何正确求助?哪些是违规求助? 4685010
关于积分的说明 14837502
捐赠科研通 4668037
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783