From mechanical resilience to active material properties in biopolymer networks

生物高聚物 活性物质 弹性(材料科学) 细胞外基质 弹性(物理) 纳米技术 互连性 生命系统 材料科学 计算机科学 生化工程 聚合物 化学 人工智能 工程类 生物 复合材料 细胞生物学 生物化学
作者
Federica Burla,Yuval Mulla,Bart E. Vos,Anders Aufderhorst-Roberts,Gijsje H. Koenderink
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:1 (4): 249-263 被引量:159
标识
DOI:10.1038/s42254-019-0036-4
摘要

The cells and tissues that make up our body manage contradictory mechanical demands. It is crucial for their survival to be able to withstand large mechanical loads, but it is equally crucial for them to produce forces and actively change shape during biological processes such as tissue growth and repair. The mechanics of cells and tissues is determined by scaffolds of protein polymers known as the cytoskeleton and the extracellular matrix, respectively. Experiments on model systems reconstituted from purified components combined with polymer physics concepts have already uncovered some of the mechanisms that underlie the paradoxical mechanics of living matter. Initial work focused on explaining universal features, such as the nonlinear elasticity of cells and tissues, in terms of polymer network models. However, there is a growing recognition that living matter exhibits many advanced mechanical functionalities that are not captured by these coarse-grained theories. Here, we review recent experimental and theoretical insights that reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of biopolymers confer resilience combined with the ability to adapt and self-heal. These physical concepts increase our understanding of cell and tissue biology and provide inspiration for advanced synthetic materials. Biopolymer networks provide mechanical integrity and enable active deformation of cells and tissues. Here, we review recent experimental and theoretical studies of the mechanical behaviour of biopolymer networks with a focus on reductionist approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助易酰水烊酸采纳,获得10
刚刚
1秒前
1秒前
超级翠应助xin采纳,获得10
1秒前
疯狂硕士完成签到,获得积分20
1秒前
2秒前
smile应助年华采纳,获得20
2秒前
2秒前
2秒前
2秒前
xue发布了新的文献求助10
3秒前
菜就多练完成签到,获得积分10
3秒前
3秒前
轨迹应助小熊采纳,获得30
3秒前
科研通AI6应助Jks采纳,获得10
3秒前
4秒前
LZ的脑子发布了新的文献求助10
4秒前
Aries完成签到,获得积分10
4秒前
Stella应助fnuew采纳,获得10
4秒前
向向发布了新的文献求助10
5秒前
桐桐应助wrk采纳,获得10
5秒前
闻言完成签到,获得积分10
5秒前
杰瑞院士完成签到,获得积分10
5秒前
hwezhu完成签到,获得积分10
5秒前
5秒前
Epiphany完成签到,获得积分10
5秒前
6秒前
7秒前
13633501455发布了新的文献求助20
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
hwezhu发布了新的文献求助10
7秒前
张哈哈发布了新的文献求助10
7秒前
Gui桂发布了新的文献求助10
8秒前
kingdirt完成签到,获得积分10
8秒前
sophia完成签到,获得积分10
8秒前
阿靖发布了新的文献求助10
8秒前
我是狗发布了新的文献求助20
8秒前
zz完成签到,获得积分20
8秒前
KSung发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608584
求助须知:如何正确求助?哪些是违规求助? 4693308
关于积分的说明 14877618
捐赠科研通 4718061
什么是DOI,文献DOI怎么找? 2544332
邀请新用户注册赠送积分活动 1509463
关于科研通互助平台的介绍 1472844