From mechanical resilience to active material properties in biopolymer networks

生物高聚物 活性物质 弹性(材料科学) 细胞外基质 弹性(物理) 纳米技术 互连性 生命系统 材料科学 计算机科学 生化工程 聚合物 化学 人工智能 工程类 生物 复合材料 细胞生物学 生物化学
作者
Federica Burla,Yuval Mulla,Bart E. Vos,Anders Aufderhorst-Roberts,Gijsje H. Koenderink
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:1 (4): 249-263 被引量:159
标识
DOI:10.1038/s42254-019-0036-4
摘要

The cells and tissues that make up our body manage contradictory mechanical demands. It is crucial for their survival to be able to withstand large mechanical loads, but it is equally crucial for them to produce forces and actively change shape during biological processes such as tissue growth and repair. The mechanics of cells and tissues is determined by scaffolds of protein polymers known as the cytoskeleton and the extracellular matrix, respectively. Experiments on model systems reconstituted from purified components combined with polymer physics concepts have already uncovered some of the mechanisms that underlie the paradoxical mechanics of living matter. Initial work focused on explaining universal features, such as the nonlinear elasticity of cells and tissues, in terms of polymer network models. However, there is a growing recognition that living matter exhibits many advanced mechanical functionalities that are not captured by these coarse-grained theories. Here, we review recent experimental and theoretical insights that reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of biopolymers confer resilience combined with the ability to adapt and self-heal. These physical concepts increase our understanding of cell and tissue biology and provide inspiration for advanced synthetic materials. Biopolymer networks provide mechanical integrity and enable active deformation of cells and tissues. Here, we review recent experimental and theoretical studies of the mechanical behaviour of biopolymer networks with a focus on reductionist approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆呆完成签到,获得积分10
1秒前
sunflower发布了新的文献求助30
1秒前
wjx发布了新的文献求助10
2秒前
彳亍完成签到,获得积分10
2秒前
天天快乐应助Richard采纳,获得30
2秒前
李爱国应助生动以云采纳,获得10
2秒前
3秒前
4秒前
4秒前
幽默鱼完成签到,获得积分10
5秒前
5秒前
小巧幼蓉完成签到,获得积分20
5秒前
耶耶耶发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
今后应助菠菜采纳,获得10
6秒前
西卡比巴卜完成签到,获得积分10
6秒前
领导范儿应助木子小微采纳,获得20
6秒前
7秒前
科研通AI6应助斯文海菡采纳,获得10
8秒前
8秒前
yuan完成签到,获得积分10
8秒前
JamesPei应助1234采纳,获得10
8秒前
抹茶泡泡完成签到 ,获得积分10
8秒前
晶晶发布了新的文献求助10
8秒前
爆米花应助科研小何采纳,获得10
8秒前
guandada发布了新的文献求助10
9秒前
烟花应助俭朴的含海采纳,获得10
9秒前
melody发布了新的文献求助10
10秒前
10秒前
科研通AI6应助Esang采纳,获得10
10秒前
10秒前
薯片片发布了新的文献求助10
11秒前
11秒前
天蓝日月潭完成签到 ,获得积分10
11秒前
shbkmy完成签到,获得积分10
11秒前
兔兔要睡觉完成签到,获得积分10
12秒前
可爱的函函应助fev123采纳,获得10
12秒前
Kaz完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249