From mechanical resilience to active material properties in biopolymer networks

生物高聚物 活性物质 弹性(材料科学) 细胞外基质 弹性(物理) 纳米技术 互连性 生命系统 材料科学 计算机科学 生化工程 聚合物 化学 人工智能 工程类 生物 复合材料 细胞生物学 生物化学
作者
Federica Burla,Yuval Mulla,Bart E. Vos,Anders Aufderhorst-Roberts,Gijsje H. Koenderink
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:1 (4): 249-263 被引量:159
标识
DOI:10.1038/s42254-019-0036-4
摘要

The cells and tissues that make up our body manage contradictory mechanical demands. It is crucial for their survival to be able to withstand large mechanical loads, but it is equally crucial for them to produce forces and actively change shape during biological processes such as tissue growth and repair. The mechanics of cells and tissues is determined by scaffolds of protein polymers known as the cytoskeleton and the extracellular matrix, respectively. Experiments on model systems reconstituted from purified components combined with polymer physics concepts have already uncovered some of the mechanisms that underlie the paradoxical mechanics of living matter. Initial work focused on explaining universal features, such as the nonlinear elasticity of cells and tissues, in terms of polymer network models. However, there is a growing recognition that living matter exhibits many advanced mechanical functionalities that are not captured by these coarse-grained theories. Here, we review recent experimental and theoretical insights that reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of biopolymers confer resilience combined with the ability to adapt and self-heal. These physical concepts increase our understanding of cell and tissue biology and provide inspiration for advanced synthetic materials. Biopolymer networks provide mechanical integrity and enable active deformation of cells and tissues. Here, we review recent experimental and theoretical studies of the mechanical behaviour of biopolymer networks with a focus on reductionist approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
陈秀娟完成签到,获得积分10
刚刚
刚刚
芳菲依旧应助Cloudyyy采纳,获得50
1秒前
1秒前
高挑的冰兰完成签到,获得积分10
1秒前
学不懂看不会完成签到,获得积分10
1秒前
赘婿应助zhaozhao采纳,获得10
1秒前
噜噜发布了新的文献求助50
2秒前
3秒前
小崔读研完成签到 ,获得积分10
4秒前
甜甜千兰发布了新的文献求助10
4秒前
4秒前
英姑应助无私的聪展采纳,获得30
5秒前
隐形曼青应助无私的聪展采纳,获得30
5秒前
orixero应助无私的聪展采纳,获得30
5秒前
5秒前
Akim应助无私的聪展采纳,获得30
5秒前
星辰大海应助无私的聪展采纳,获得30
5秒前
完美世界应助无私的聪展采纳,获得30
5秒前
Lonnie完成签到,获得积分10
5秒前
小马甲应助无私的聪展采纳,获得30
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
鞘皮完成签到,获得积分10
6秒前
6秒前
zll发布了新的文献求助10
6秒前
6秒前
Fly完成签到,获得积分10
7秒前
Hanoi347应助manman采纳,获得10
7秒前
7秒前
8秒前
8秒前
gongq完成签到 ,获得积分10
9秒前
大海完成签到,获得积分10
9秒前
子车茗应助漂亮萝莉采纳,获得30
10秒前
10秒前
Datouy发布了新的文献求助10
10秒前
研友_VZG7GZ应助HH采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652435
求助须知:如何正确求助?哪些是违规求助? 4787491
关于积分的说明 15060101
捐赠科研通 4811034
什么是DOI,文献DOI怎么找? 2573593
邀请新用户注册赠送积分活动 1529388
关于科研通互助平台的介绍 1488259