生物高聚物
活性物质
弹性(材料科学)
细胞外基质
弹性(物理)
纳米技术
互连性
生命系统
材料科学
计算机科学
生化工程
聚合物
化学
人工智能
工程类
生物
复合材料
细胞生物学
生物化学
作者
Federica Burla,Yuval Mulla,Bart E. Vos,Anders Aufderhorst-Roberts,Gijsje H. Koenderink
标识
DOI:10.1038/s42254-019-0036-4
摘要
The cells and tissues that make up our body manage contradictory mechanical demands. It is crucial for their survival to be able to withstand large mechanical loads, but it is equally crucial for them to produce forces and actively change shape during biological processes such as tissue growth and repair. The mechanics of cells and tissues is determined by scaffolds of protein polymers known as the cytoskeleton and the extracellular matrix, respectively. Experiments on model systems reconstituted from purified components combined with polymer physics concepts have already uncovered some of the mechanisms that underlie the paradoxical mechanics of living matter. Initial work focused on explaining universal features, such as the nonlinear elasticity of cells and tissues, in terms of polymer network models. However, there is a growing recognition that living matter exhibits many advanced mechanical functionalities that are not captured by these coarse-grained theories. Here, we review recent experimental and theoretical insights that reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of biopolymers confer resilience combined with the ability to adapt and self-heal. These physical concepts increase our understanding of cell and tissue biology and provide inspiration for advanced synthetic materials. Biopolymer networks provide mechanical integrity and enable active deformation of cells and tissues. Here, we review recent experimental and theoretical studies of the mechanical behaviour of biopolymer networks with a focus on reductionist approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI