Image enhancement using convolutional neural network

射线照相术 卷积神经网络 计算机科学 对比度(视觉) 探测器 泊松分布 人工智能 图像质量 计算机视觉 辐射 胸片 图像(数学) 光学 数学 放射科 医学 物理 统计 电信
作者
Abel Zhou,Qi Tan,Rob Davidson
标识
DOI:10.1117/12.2581154
摘要

One common interest in radiography is producing radiographs with as low as possible radiation exposures to patients. In clinical practices, radiation exposure factors are preset for optimal image qualities to avoid underexposures which will lead to repeating examinations hence increasing radiation exposures to patients. Underexposed radiographs mainly suffer from Poisson noises due to inadequate photons reaching the detector. Radiographs are often degraded by scatter radiations and the severity of image quality degradations depends on the amount of scatters reaching the detectors. In this work, a convolutional neural network (CNN) algorithm was used to predict scatters and reduce Poisson noises. Monte Carlo simulation images and an adult abdomen radiograph were used to evaluate this CNN algorithm. The radiograph was underexposed by 60% radiation exposures. The simulation images were produced with one-thousandth of a typical clinical exposure. The results show that Poisson noises are successfully reduced, and image contrast and details are improved. After the underexposed radiograph which is not useful for making a confident diagnosis was processed using the CNN algorithm, the contrast and details in the radiograph were greatly improved and are adequate for making a diagnosis, therefore a 60% radiation dose reduction was achieved. This work shows that radiograph qualities can be improved by reducing scatters and Poisson noises. A potential application of this CNN algorithm is for patient radiation dose reductions by reducing current preset optimal radiation exposures and then using this algorithm to enhance the image contrast and details by reducing both scatters and Poisson noises.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sasa完成签到,获得积分20
1秒前
1秒前
sasa发布了新的文献求助10
4秒前
甜甜静槐发布了新的文献求助10
4秒前
Dxy-TOFA完成签到,获得积分10
5秒前
5秒前
7秒前
GaoChenxi发布了新的文献求助10
8秒前
Zzz呀完成签到 ,获得积分10
9秒前
沉默诗兰完成签到,获得积分10
9秒前
12秒前
Wqian发布了新的文献求助10
15秒前
22秒前
浮游应助单薄的寻桃采纳,获得10
23秒前
26秒前
Jodie发布了新的文献求助10
28秒前
28秒前
科研通AI6应助nmeiko采纳,获得10
28秒前
29秒前
qxm完成签到 ,获得积分10
31秒前
32秒前
Quanta完成签到,获得积分10
33秒前
渔婆发布了新的文献求助10
34秒前
laruijoint完成签到,获得积分10
34秒前
淘气乌龙茶完成签到 ,获得积分10
35秒前
鹏程完成签到,获得积分10
37秒前
丘比特应助呆妞采纳,获得10
40秒前
41秒前
蔡克东发布了新的文献求助10
41秒前
LL完成签到 ,获得积分10
46秒前
小泡芙完成签到,获得积分10
47秒前
朱梦琳朱梦琳完成签到,获得积分10
48秒前
48秒前
48秒前
古藤完成签到 ,获得积分10
49秒前
53秒前
在水一方应助伯言采纳,获得10
53秒前
吴咪发布了新的文献求助10
53秒前
呆妞发布了新的文献求助10
54秒前
浮游应助Quanta采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555