清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Image enhancement using convolutional neural network

射线照相术 卷积神经网络 计算机科学 对比度(视觉) 探测器 泊松分布 人工智能 图像质量 计算机视觉 辐射 胸片 图像(数学) 光学 数学 放射科 医学 物理 统计 电信
作者
Abel Zhou,Qi Tan,Rob Davidson
标识
DOI:10.1117/12.2581154
摘要

One common interest in radiography is producing radiographs with as low as possible radiation exposures to patients. In clinical practices, radiation exposure factors are preset for optimal image qualities to avoid underexposures which will lead to repeating examinations hence increasing radiation exposures to patients. Underexposed radiographs mainly suffer from Poisson noises due to inadequate photons reaching the detector. Radiographs are often degraded by scatter radiations and the severity of image quality degradations depends on the amount of scatters reaching the detectors. In this work, a convolutional neural network (CNN) algorithm was used to predict scatters and reduce Poisson noises. Monte Carlo simulation images and an adult abdomen radiograph were used to evaluate this CNN algorithm. The radiograph was underexposed by 60% radiation exposures. The simulation images were produced with one-thousandth of a typical clinical exposure. The results show that Poisson noises are successfully reduced, and image contrast and details are improved. After the underexposed radiograph which is not useful for making a confident diagnosis was processed using the CNN algorithm, the contrast and details in the radiograph were greatly improved and are adequate for making a diagnosis, therefore a 60% radiation dose reduction was achieved. This work shows that radiograph qualities can be improved by reducing scatters and Poisson noises. A potential application of this CNN algorithm is for patient radiation dose reductions by reducing current preset optimal radiation exposures and then using this algorithm to enhance the image contrast and details by reducing both scatters and Poisson noises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
11秒前
郜郜嗳发布了新的文献求助10
14秒前
怪杰发布了新的文献求助10
15秒前
火星的雪完成签到 ,获得积分10
20秒前
郜郜嗳完成签到,获得积分10
30秒前
万能图书馆应助怪杰采纳,获得10
44秒前
55秒前
55秒前
58秒前
kokoko完成签到,获得积分10
1分钟前
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
Sunny完成签到,获得积分10
2分钟前
2分钟前
英喆完成签到 ,获得积分10
2分钟前
arsenal完成签到 ,获得积分10
2分钟前
ryan1300完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
怪杰发布了新的文献求助10
2分钟前
火之高兴完成签到 ,获得积分10
2分钟前
2分钟前
Skywings完成签到,获得积分10
3分钟前
怪杰发布了新的文献求助10
3分钟前
3分钟前
Angela发布了新的文献求助10
3分钟前
JamesPei应助怪杰采纳,获得10
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
kysl完成签到,获得积分10
3分钟前
Angela完成签到,获得积分10
4分钟前
cgs完成签到 ,获得积分10
4分钟前
iorpi完成签到,获得积分10
4分钟前
kenchilie完成签到 ,获得积分10
4分钟前
4分钟前
无悔完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292