A Statistical Method for Estimating Activity Uncertainty Parameters to Improve Project Forecasting

计算机科学 熵(时间箭头) 校准 地铁列车时刻表 经验分布函数 概率分布 启发式 数据挖掘 计量经济学 统计 人工智能 数学 物理 量子力学 操作系统
作者
Mario Vanhoucke,Jordy Batselier
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:21 (10): 952-952 被引量:10
标识
DOI:10.3390/e21100952
摘要

Just like any physical system, projects have entropy that must be managed by spending energy. The entropy is the project’s tendency to move to a state of disorder (schedule delays, cost overruns), and the energy process is an inherent part of any project management methodology. In order to manage the inherent uncertainty of these projects, accurate estimates (for durations, costs, resources, …) are crucial to make informed decisions. Without these estimates, managers have to fall back to their own intuition and experience, which are undoubtedly crucial for making decisions, but are are often subject to biases and hard to quantify. This paper builds further on two published calibration methods that aim to extract data from real projects and calibrate them to better estimate the parameters for the probability distributions of activity durations. Both methods rely on the lognormal distribution model to estimate uncertainty in activity durations and perform a sequence of statistical hypothesis tests that take the possible presence of two human biases into account. Based on these two existing methods, a new so-called statistical partitioning heuristic is presented that integrates the best elements of the two methods to further improve the accuracy of estimating the distribution of activity duration uncertainty. A computational experiment has been carried out on an empirical database of 83 empirical projects. The experiment shows that the new statistical partitioning method performs at least as good as, and often better than, the two existing calibration methods. The improvement will allow a better quantification of the activity duration uncertainty, which will eventually lead to a better prediction of the project schedule and more realistic expectations about the project outcomes. Consequently, the project manager will be able to better cope with the inherent uncertainty (entropy) of projects with a minimum managerial effort (energy).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maizhan完成签到,获得积分10
刚刚
文龙发布了新的文献求助10
1秒前
传奇3应助xueerbx采纳,获得10
1秒前
1秒前
李白白白完成签到,获得积分10
2秒前
璐璇完成签到,获得积分10
2秒前
乌云乌云快走开完成签到,获得积分10
2秒前
韩雨桐完成签到,获得积分10
3秒前
十七完成签到 ,获得积分10
3秒前
tanc发布了新的文献求助10
3秒前
花痴的电灯泡完成签到,获得积分10
3秒前
bittersweety完成签到,获得积分10
3秒前
蓝冰完成签到,获得积分10
3秒前
赘婿应助花生采纳,获得10
3秒前
如意枫叶发布了新的文献求助10
4秒前
4秒前
张步完成签到 ,获得积分10
4秒前
rayzhanghl完成签到,获得积分10
4秒前
奋斗老鼠发布了新的文献求助10
5秒前
5秒前
子非我发布了新的文献求助10
5秒前
小程同学发布了新的文献求助10
5秒前
ycg发布了新的文献求助20
6秒前
州府十三完成签到,获得积分20
6秒前
Diss完成签到,获得积分10
6秒前
Orange应助科研通管家采纳,获得30
7秒前
8秒前
云舒应助科研通管家采纳,获得30
8秒前
Orange应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
iNk应助科研通管家采纳,获得20
8秒前
yar应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
musejie应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
Rylee完成签到,获得积分10
8秒前
iNk应助科研通管家采纳,获得20
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582