A Statistical Method for Estimating Activity Uncertainty Parameters to Improve Project Forecasting

计算机科学 熵(时间箭头) 校准 地铁列车时刻表 经验分布函数 概率分布 启发式 数据挖掘 计量经济学 统计 人工智能 数学 量子力学 操作系统 物理
作者
Mario Vanhoucke,Jordy Batselier
出处
期刊:Entropy [MDPI AG]
卷期号:21 (10): 952-952 被引量:10
标识
DOI:10.3390/e21100952
摘要

Just like any physical system, projects have entropy that must be managed by spending energy. The entropy is the project’s tendency to move to a state of disorder (schedule delays, cost overruns), and the energy process is an inherent part of any project management methodology. In order to manage the inherent uncertainty of these projects, accurate estimates (for durations, costs, resources, …) are crucial to make informed decisions. Without these estimates, managers have to fall back to their own intuition and experience, which are undoubtedly crucial for making decisions, but are are often subject to biases and hard to quantify. This paper builds further on two published calibration methods that aim to extract data from real projects and calibrate them to better estimate the parameters for the probability distributions of activity durations. Both methods rely on the lognormal distribution model to estimate uncertainty in activity durations and perform a sequence of statistical hypothesis tests that take the possible presence of two human biases into account. Based on these two existing methods, a new so-called statistical partitioning heuristic is presented that integrates the best elements of the two methods to further improve the accuracy of estimating the distribution of activity duration uncertainty. A computational experiment has been carried out on an empirical database of 83 empirical projects. The experiment shows that the new statistical partitioning method performs at least as good as, and often better than, the two existing calibration methods. The improvement will allow a better quantification of the activity duration uncertainty, which will eventually lead to a better prediction of the project schedule and more realistic expectations about the project outcomes. Consequently, the project manager will be able to better cope with the inherent uncertainty (entropy) of projects with a minimum managerial effort (energy).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓天完成签到,获得积分10
刚刚
jxas完成签到,获得积分10
2秒前
打打应助东方耀采纳,获得10
2秒前
chnningji发布了新的文献求助30
3秒前
shan完成签到,获得积分10
3秒前
舒适的石头完成签到,获得积分10
4秒前
张姣姣完成签到,获得积分10
4秒前
阿晴完成签到 ,获得积分10
5秒前
shuaibijiang完成签到,获得积分10
5秒前
汉桑波欸完成签到,获得积分10
6秒前
hi_zhanghao完成签到,获得积分10
6秒前
真实的麦片应助浚稚采纳,获得20
6秒前
guohezu发布了新的文献求助10
6秒前
qawsed完成签到,获得积分10
6秒前
ZZ0110Z完成签到 ,获得积分10
6秒前
雨落瑾年完成签到,获得积分10
7秒前
ivy完成签到,获得积分10
7秒前
Asuna完成签到,获得积分10
7秒前
典雅的太阳完成签到,获得积分10
8秒前
温柔的沉鱼完成签到,获得积分10
8秒前
崽崽在想什么完成签到,获得积分10
8秒前
忐忑的邑完成签到,获得积分10
9秒前
果汁完成签到,获得积分10
9秒前
小明完成签到,获得积分10
9秒前
jjjjchou完成签到,获得积分10
9秒前
分不分完成签到 ,获得积分10
9秒前
MHCL完成签到 ,获得积分10
10秒前
ying完成签到,获得积分10
12秒前
研友_IEEE快到碗里来完成签到,获得积分10
13秒前
搬砖工完成签到,获得积分10
13秒前
简单而复杂完成签到,获得积分10
13秒前
14秒前
GG完成签到 ,获得积分10
15秒前
Dawn完成签到 ,获得积分10
16秒前
爱撒娇的丹亦完成签到,获得积分10
17秒前
18秒前
活力菠萝完成签到,获得积分10
18秒前
18秒前
memory完成签到,获得积分10
19秒前
美美完成签到 ,获得积分10
19秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158693
求助须知:如何正确求助?哪些是违规求助? 2809927
关于积分的说明 7884596
捐赠科研通 2468681
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012