A Statistical Method for Estimating Activity Uncertainty Parameters to Improve Project Forecasting

计算机科学 熵(时间箭头) 校准 地铁列车时刻表 经验分布函数 概率分布 启发式 数据挖掘 计量经济学 统计 人工智能 数学 物理 量子力学 操作系统
作者
Mario Vanhoucke,Jordy Batselier
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:21 (10): 952-952 被引量:10
标识
DOI:10.3390/e21100952
摘要

Just like any physical system, projects have entropy that must be managed by spending energy. The entropy is the project’s tendency to move to a state of disorder (schedule delays, cost overruns), and the energy process is an inherent part of any project management methodology. In order to manage the inherent uncertainty of these projects, accurate estimates (for durations, costs, resources, …) are crucial to make informed decisions. Without these estimates, managers have to fall back to their own intuition and experience, which are undoubtedly crucial for making decisions, but are are often subject to biases and hard to quantify. This paper builds further on two published calibration methods that aim to extract data from real projects and calibrate them to better estimate the parameters for the probability distributions of activity durations. Both methods rely on the lognormal distribution model to estimate uncertainty in activity durations and perform a sequence of statistical hypothesis tests that take the possible presence of two human biases into account. Based on these two existing methods, a new so-called statistical partitioning heuristic is presented that integrates the best elements of the two methods to further improve the accuracy of estimating the distribution of activity duration uncertainty. A computational experiment has been carried out on an empirical database of 83 empirical projects. The experiment shows that the new statistical partitioning method performs at least as good as, and often better than, the two existing calibration methods. The improvement will allow a better quantification of the activity duration uncertainty, which will eventually lead to a better prediction of the project schedule and more realistic expectations about the project outcomes. Consequently, the project manager will be able to better cope with the inherent uncertainty (entropy) of projects with a minimum managerial effort (energy).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
keyring完成签到 ,获得积分10
1秒前
1秒前
2秒前
伶俐碧萱完成签到 ,获得积分10
2秒前
Sugar发布了新的文献求助10
3秒前
传奇3应助落后项链采纳,获得10
3秒前
maybe发布了新的文献求助10
3秒前
4秒前
紫色哀伤完成签到,获得积分10
5秒前
acadedog完成签到 ,获得积分10
6秒前
6秒前
null应助拉格朗日柴犬采纳,获得10
7秒前
烟花应助hjjjjj1采纳,获得10
8秒前
氯吡格雷发布了新的文献求助10
8秒前
zz完成签到,获得积分10
9秒前
科研通AI2S应助大梦采纳,获得10
10秒前
老牛完成签到 ,获得积分10
10秒前
cgl155410完成签到,获得积分10
12秒前
12秒前
12秒前
浮游应助冷傲藏鸟采纳,获得10
12秒前
13秒前
华仔应助伶俐碧萱采纳,获得10
14秒前
安心完成签到,获得积分10
14秒前
科研通AI2S应助May采纳,获得10
15秒前
16秒前
鱼鱼鱼鱼完成签到,获得积分20
16秒前
搜集达人应助梦希陌采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
曹玮完成签到 ,获得积分20
18秒前
橙子发布了新的文献求助10
18秒前
husy完成签到,获得积分10
18秒前
杨柳发布了新的文献求助10
19秒前
20秒前
20秒前
wanci应助鱼鱼鱼鱼采纳,获得10
21秒前
桐桐应助zwf123采纳,获得10
21秒前
顾矜应助ys采纳,获得20
22秒前
科研通AI6应助TWO宝采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869