A Statistical Method for Estimating Activity Uncertainty Parameters to Improve Project Forecasting

计算机科学 熵(时间箭头) 校准 地铁列车时刻表 经验分布函数 概率分布 启发式 数据挖掘 计量经济学 统计 人工智能 数学 量子力学 操作系统 物理
作者
Mario Vanhoucke,Jordy Batselier
出处
期刊:Entropy [MDPI AG]
卷期号:21 (10): 952-952 被引量:10
标识
DOI:10.3390/e21100952
摘要

Just like any physical system, projects have entropy that must be managed by spending energy. The entropy is the project’s tendency to move to a state of disorder (schedule delays, cost overruns), and the energy process is an inherent part of any project management methodology. In order to manage the inherent uncertainty of these projects, accurate estimates (for durations, costs, resources, …) are crucial to make informed decisions. Without these estimates, managers have to fall back to their own intuition and experience, which are undoubtedly crucial for making decisions, but are are often subject to biases and hard to quantify. This paper builds further on two published calibration methods that aim to extract data from real projects and calibrate them to better estimate the parameters for the probability distributions of activity durations. Both methods rely on the lognormal distribution model to estimate uncertainty in activity durations and perform a sequence of statistical hypothesis tests that take the possible presence of two human biases into account. Based on these two existing methods, a new so-called statistical partitioning heuristic is presented that integrates the best elements of the two methods to further improve the accuracy of estimating the distribution of activity duration uncertainty. A computational experiment has been carried out on an empirical database of 83 empirical projects. The experiment shows that the new statistical partitioning method performs at least as good as, and often better than, the two existing calibration methods. The improvement will allow a better quantification of the activity duration uncertainty, which will eventually lead to a better prediction of the project schedule and more realistic expectations about the project outcomes. Consequently, the project manager will be able to better cope with the inherent uncertainty (entropy) of projects with a minimum managerial effort (energy).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nextconnie发布了新的文献求助10
刚刚
nextconnie发布了新的文献求助10
刚刚
CO2发布了新的文献求助10
1秒前
uniquedl完成签到 ,获得积分10
1秒前
nextconnie发布了新的文献求助10
1秒前
子伊完成签到 ,获得积分10
2秒前
5秒前
5秒前
5秒前
今后应助憨鬼憨切采纳,获得10
7秒前
7秒前
8秒前
greenPASS666完成签到,获得积分10
10秒前
KYN发布了新的文献求助10
10秒前
11秒前
meng发布了新的文献求助10
11秒前
12秒前
Leon发布了新的文献求助10
12秒前
axunQAQ发布了新的文献求助10
12秒前
111发布了新的文献求助10
13秒前
14秒前
cc发布了新的文献求助10
17秒前
程勋航完成签到,获得积分10
17秒前
HH完成签到,获得积分10
17秒前
陆千万完成签到,获得积分10
19秒前
我是125应助老疯智采纳,获得10
19秒前
LEE发布了新的文献求助10
19秒前
Leon完成签到,获得积分10
22秒前
愉快的紫丝完成签到,获得积分10
22秒前
24秒前
玩命的紫南完成签到 ,获得积分10
25秒前
25秒前
25秒前
剁辣椒蒸鱼头完成签到 ,获得积分10
27秒前
牛牛要当院士喽完成签到,获得积分10
27秒前
27秒前
香蕉觅云应助lyt采纳,获得10
28秒前
WJ发布了新的文献求助10
29秒前
30秒前
dbq完成签到 ,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849