已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Statistical Method for Estimating Activity Uncertainty Parameters to Improve Project Forecasting

计算机科学 熵(时间箭头) 校准 地铁列车时刻表 经验分布函数 概率分布 启发式 数据挖掘 计量经济学 统计 人工智能 数学 物理 量子力学 操作系统
作者
Mario Vanhoucke,Jordy Batselier
出处
期刊:Entropy [MDPI AG]
卷期号:21 (10): 952-952 被引量:10
标识
DOI:10.3390/e21100952
摘要

Just like any physical system, projects have entropy that must be managed by spending energy. The entropy is the project’s tendency to move to a state of disorder (schedule delays, cost overruns), and the energy process is an inherent part of any project management methodology. In order to manage the inherent uncertainty of these projects, accurate estimates (for durations, costs, resources, …) are crucial to make informed decisions. Without these estimates, managers have to fall back to their own intuition and experience, which are undoubtedly crucial for making decisions, but are are often subject to biases and hard to quantify. This paper builds further on two published calibration methods that aim to extract data from real projects and calibrate them to better estimate the parameters for the probability distributions of activity durations. Both methods rely on the lognormal distribution model to estimate uncertainty in activity durations and perform a sequence of statistical hypothesis tests that take the possible presence of two human biases into account. Based on these two existing methods, a new so-called statistical partitioning heuristic is presented that integrates the best elements of the two methods to further improve the accuracy of estimating the distribution of activity duration uncertainty. A computational experiment has been carried out on an empirical database of 83 empirical projects. The experiment shows that the new statistical partitioning method performs at least as good as, and often better than, the two existing calibration methods. The improvement will allow a better quantification of the activity duration uncertainty, which will eventually lead to a better prediction of the project schedule and more realistic expectations about the project outcomes. Consequently, the project manager will be able to better cope with the inherent uncertainty (entropy) of projects with a minimum managerial effort (energy).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助范良聪采纳,获得10
5秒前
嘉心糖完成签到,获得积分0
5秒前
小方完成签到,获得积分10
5秒前
于鱼发布了新的文献求助10
6秒前
7秒前
kkw完成签到,获得积分10
8秒前
江睿曦发布了新的文献求助10
12秒前
BIB完成签到,获得积分10
13秒前
乐乐应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
嘿嘿应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
15秒前
VDC应助科研通管家采纳,获得30
15秒前
18秒前
19秒前
范良聪完成签到,获得积分10
19秒前
寻找组织应助ceeray23采纳,获得20
20秒前
yiyao完成签到 ,获得积分10
20秒前
WEILAI完成签到 ,获得积分10
21秒前
Tian发布了新的文献求助10
21秒前
lcx发布了新的文献求助10
22秒前
Lynn完成签到 ,获得积分10
22秒前
23秒前
23秒前
dlfg完成签到,获得积分10
23秒前
Sylvia发布了新的文献求助30
24秒前
krzysku完成签到,获得积分10
25秒前
25秒前
深情丸子完成签到 ,获得积分10
26秒前
洪礼训发布了新的文献求助10
27秒前
充电宝应助科研采纳,获得30
28秒前
单纯发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571