Enhancing navigation performance through visual-inertial odometry in GNSS-degraded environment

全球导航卫星系统应用 全球导航卫星系统增强 计算机科学 空中航行 惯性测量装置 全球定位系统 惯性导航系统 实时计算 里程计 卡尔曼滤波器 惯性参考系 人工智能 模拟 卫星系统 电信 移动机器人 量子力学 机器人 物理
作者
Jianchi Liao,Xingxing Li,Xuanbin Wang,Shengyu Li,Huidan Wang
出处
期刊:Gps Solutions [Springer Nature]
卷期号:25 (2) 被引量:43
标识
DOI:10.1007/s10291-020-01056-0
摘要

In recent years, with the rapid development of automated driving technology, the task for achieving continuous, dependable, and high-precision vehicle navigation becomes crucial. The integration of the global navigation satellite system (GNSS) and inertial navigation system (INS), as a proven technology, is confined by the grade of inertial measurement unit and time-increasing INS errors during GNSS outages. Meanwhile, the ability of simultaneous localization and environment perception makes the vision-based navigation technology yield excellent results. Nevertheless, such methods still have to rely on global navigation results to eliminate the accumulation of errors because of the limitation of loop closing. In this case, we proposed a GNSS/INS/Vision integrated solution to provide robust and continuous navigation output in complex driving conditions, especially for the GNSS-degraded environment. Raw observations of multi-GNSS are used to construct double-differenced equations for global navigation estimation, and a tightly coupled extended Kalman filter-based visual-inertial method is applied to achieve high-accuracy local pose. The integrated system was evaluated in experimental validation by both the GNSS outage simulation and vehicular field experiments in different GNSS availability situations. The results indicate that the GNSS navigation performance is significantly improved comparing to the GNSS/INS loosely coupled solution in the GNSS-challenged environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助四体不勤采纳,获得10
4秒前
学术大亨完成签到,获得积分10
5秒前
无水乙醚完成签到,获得积分10
5秒前
runtang发布了新的文献求助50
5秒前
guard发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
Meyako应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
hbhbj应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
李健应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
hbhbj应助科研通管家采纳,获得10
8秒前
liao应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
hbhbj应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
hbhbj应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
liao应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得20
9秒前
子车茗应助科研通管家采纳,获得30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
happyyoyo应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457723
求助须知:如何正确求助?哪些是违规求助? 4563994
关于积分的说明 14293028
捐赠科研通 4488769
什么是DOI,文献DOI怎么找? 2458704
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343