Enhancing navigation performance through visual-inertial odometry in GNSS-degraded environment

全球导航卫星系统应用 全球导航卫星系统增强 计算机科学 空中航行 惯性测量装置 全球定位系统 惯性导航系统 实时计算 里程计 卡尔曼滤波器 惯性参考系 人工智能 模拟 卫星系统 电信 移动机器人 物理 机器人 量子力学
作者
Jianchi Liao,Xingxing Li,Xuanbin Wang,Shengyu Li,Huidan Wang
出处
期刊:Gps Solutions [Springer Nature]
卷期号:25 (2) 被引量:43
标识
DOI:10.1007/s10291-020-01056-0
摘要

In recent years, with the rapid development of automated driving technology, the task for achieving continuous, dependable, and high-precision vehicle navigation becomes crucial. The integration of the global navigation satellite system (GNSS) and inertial navigation system (INS), as a proven technology, is confined by the grade of inertial measurement unit and time-increasing INS errors during GNSS outages. Meanwhile, the ability of simultaneous localization and environment perception makes the vision-based navigation technology yield excellent results. Nevertheless, such methods still have to rely on global navigation results to eliminate the accumulation of errors because of the limitation of loop closing. In this case, we proposed a GNSS/INS/Vision integrated solution to provide robust and continuous navigation output in complex driving conditions, especially for the GNSS-degraded environment. Raw observations of multi-GNSS are used to construct double-differenced equations for global navigation estimation, and a tightly coupled extended Kalman filter-based visual-inertial method is applied to achieve high-accuracy local pose. The integrated system was evaluated in experimental validation by both the GNSS outage simulation and vehicular field experiments in different GNSS availability situations. The results indicate that the GNSS navigation performance is significantly improved comparing to the GNSS/INS loosely coupled solution in the GNSS-challenged environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的凝云完成签到 ,获得积分10
刚刚
刚刚
小党完成签到,获得积分10
刚刚
宋一丹发布了新的文献求助10
1秒前
JamesPei应助dddyrrrrr采纳,获得10
1秒前
lmy完成签到 ,获得积分10
1秒前
寂寞的诗云完成签到,获得积分10
1秒前
轻松鸿煊发布了新的文献求助10
2秒前
2秒前
北还北发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
flysky120完成签到,获得积分10
7秒前
温暖的德地完成签到,获得积分10
7秒前
Hug关闭了Hug文献求助
9秒前
9秒前
xiaorain完成签到,获得积分10
9秒前
9秒前
suiqing发布了新的文献求助10
10秒前
Lialia完成签到 ,获得积分10
10秒前
书晨发布了新的文献求助30
10秒前
M先生完成签到,获得积分10
11秒前
怡然的蚂蚁完成签到 ,获得积分10
13秒前
酷酷的如波完成签到 ,获得积分10
14秒前
正直的念梦完成签到,获得积分10
14秒前
ZZH完成签到,获得积分10
15秒前
jiao完成签到,获得积分10
16秒前
田様应助yolo采纳,获得10
16秒前
无极微光应助董兴宇采纳,获得20
16秒前
luokm完成签到,获得积分10
16秒前
LLL完成签到,获得积分10
17秒前
19秒前
风~完成签到,获得积分10
19秒前
欧班长完成签到,获得积分10
20秒前
深情安青应助xiaorain采纳,获得10
21秒前
嘟噜嘟噜应助克偃统统采纳,获得10
21秒前
lsl完成签到 ,获得积分10
21秒前
严西完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418830
求助须知:如何正确求助?哪些是违规求助? 4534433
关于积分的说明 14144216
捐赠科研通 4450723
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433062
关于科研通互助平台的介绍 1410502