Disease and pest infection detection in coconut tree through deep learning techniques

人工智能 深度学习 计算机科学 分割 阈值 图像分割 学习迁移 机器学习 有害生物分析 棕榈 树(集合论) 卷积神经网络 模式识别(心理学) 生物 数学 图像(数学) 植物 物理 数学分析 量子力学
作者
Piyush Kumar Singh,Abhishek Verma,John Sahaya Rani Alex
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:182: 105986-105986 被引量:81
标识
DOI:10.1016/j.compag.2021.105986
摘要

The coconut palm plantation industry relies heavily on expert advice to identify and treat infections. Computer vision in deep learning technology opened up an avenue in the agriculture domain to find a solution. This study focuses on the development of an end-to-end framework to detect stem bleeding disease, leaf blight disease, and pest infection by Red palm weevil in coconut trees by applying image processing and deep learning technology. A set of hand-collected images of healthy and unhealthy coconut tree images were segmented by employing popular segmentation algorithms to easily locate the abnormal boundaries. The custom-designed deep 2D-Convolutional Neural Network (CNN) is trained to predict diseases and pest infections. Also, the state of the art Keras pre-trained CNN models VGG16, VGG19, InceptionV3, DenseNet201, MobileNet, Xception, InceptionResNetV2, and NASNetMobile were fine-tuned to classify the images either as infected or as healthy through the inductive transfer learning method. The empirical study ascertains that k-means clustering segmentation was more effective than the Thresholding and Watershed segmentation methods. Furthermore, InceptionResNetV2 and MobileNet obtained a classification accuracy of 81.48% and 82.10%, respectively, and Cohen’s Kappa values of 0.77 and 0.74, respectively. The hand-designed CNN model achieved 96.94% validation accuracy with a Kappa value of 0.91. The MobileNet model and customized 2D-CNN model were deployed in the web application through the micro-web framework Flask to automatically detect the coconut tree disease or pest infection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
2秒前
丁浩伦应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
恋恋青葡萄完成签到,获得积分10
3秒前
经纲完成签到 ,获得积分0
4秒前
4秒前
7秒前
谐音梗别扣钱完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
lsx完成签到 ,获得积分10
10秒前
10秒前
杨19980625发布了新的文献求助10
11秒前
12秒前
荔枝发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
GXY完成签到,获得积分10
16秒前
ZZ完成签到 ,获得积分10
16秒前
杨19980625完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
GreenV完成签到,获得积分10
19秒前
LDDD发布了新的文献求助10
20秒前
20秒前
axiao完成签到,获得积分10
20秒前
bkagyin应助西瓜采纳,获得10
21秒前
21秒前
李健应助可咳咳咳采纳,获得10
22秒前
炙热棉花糖完成签到,获得积分10
22秒前
GreenV发布了新的文献求助10
23秒前
无花果应助小明采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574051
求助须知:如何正确求助?哪些是违规求助? 3994145
关于积分的说明 12364912
捐赠科研通 3667381
什么是DOI,文献DOI怎么找? 2021209
邀请新用户注册赠送积分活动 1055343
科研通“疑难数据库(出版商)”最低求助积分说明 942739