Disease and pest infection detection in coconut tree through deep learning techniques

人工智能 深度学习 计算机科学 分割 阈值 图像分割 学习迁移 机器学习 有害生物分析 棕榈 树(集合论) 卷积神经网络 模式识别(心理学) 生物 数学 图像(数学) 植物 物理 数学分析 量子力学
作者
Piyush Kumar Singh,Abhishek Verma,John Sahaya Rani Alex
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:182: 105986-105986 被引量:81
标识
DOI:10.1016/j.compag.2021.105986
摘要

The coconut palm plantation industry relies heavily on expert advice to identify and treat infections. Computer vision in deep learning technology opened up an avenue in the agriculture domain to find a solution. This study focuses on the development of an end-to-end framework to detect stem bleeding disease, leaf blight disease, and pest infection by Red palm weevil in coconut trees by applying image processing and deep learning technology. A set of hand-collected images of healthy and unhealthy coconut tree images were segmented by employing popular segmentation algorithms to easily locate the abnormal boundaries. The custom-designed deep 2D-Convolutional Neural Network (CNN) is trained to predict diseases and pest infections. Also, the state of the art Keras pre-trained CNN models VGG16, VGG19, InceptionV3, DenseNet201, MobileNet, Xception, InceptionResNetV2, and NASNetMobile were fine-tuned to classify the images either as infected or as healthy through the inductive transfer learning method. The empirical study ascertains that k-means clustering segmentation was more effective than the Thresholding and Watershed segmentation methods. Furthermore, InceptionResNetV2 and MobileNet obtained a classification accuracy of 81.48% and 82.10%, respectively, and Cohen’s Kappa values of 0.77 and 0.74, respectively. The hand-designed CNN model achieved 96.94% validation accuracy with a Kappa value of 0.91. The MobileNet model and customized 2D-CNN model were deployed in the web application through the micro-web framework Flask to automatically detect the coconut tree disease or pest infection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A,w携念e行ོ完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
科研通AI2S应助欧小鑫采纳,获得10
3秒前
劲秉应助gggghhhh采纳,获得30
3秒前
lin完成签到,获得积分10
4秒前
凌康应助光亮的世界采纳,获得10
6秒前
xuxuxu完成签到 ,获得积分10
10秒前
12秒前
淡然的冷松完成签到 ,获得积分10
14秒前
CM发布了新的文献求助10
15秒前
16秒前
19秒前
scq完成签到 ,获得积分10
20秒前
20秒前
缥缈念云发布了新的文献求助10
22秒前
22秒前
BING完成签到 ,获得积分10
22秒前
潘润朗完成签到,获得积分10
23秒前
科目三应助CM采纳,获得10
25秒前
地学韦丰吉司长完成签到,获得积分10
26秒前
潘润朗发布了新的文献求助10
26秒前
30秒前
SiDi发布了新的文献求助10
31秒前
32秒前
cycy发布了新的文献求助10
33秒前
哈哈悦完成签到,获得积分10
34秒前
35秒前
111发布了新的文献求助10
36秒前
要减肥人杰完成签到,获得积分10
37秒前
叁金完成签到,获得积分10
38秒前
所所应助xuxuxu采纳,获得10
39秒前
39秒前
39秒前
打打应助111采纳,获得10
42秒前
47秒前
111完成签到,获得积分10
47秒前
墨菲完成签到,获得积分10
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352352
求助须知:如何正确求助?哪些是违规求助? 2977561
关于积分的说明 8680125
捐赠科研通 2658516
什么是DOI,文献DOI怎么找? 1455859
科研通“疑难数据库(出版商)”最低求助积分说明 674121
邀请新用户注册赠送积分活动 664666