清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion

计算机科学 空格(标点符号) 特征(语言学) 完井(油气井) 人工智能 计算机视觉 工程类 机械工程 语言学 操作系统 哲学
作者
Julian Chibane,Thiemo Alldieck,Gerard Pons-Moll
出处
期刊:Computer Vision and Pattern Recognition 被引量:229
标识
DOI:10.1109/cvpr42600.2020.00700
摘要

While many works focus on 3D reconstruction from images, in this paper, we focus on 3D shape reconstruction and completion from a variety of 3D inputs, which are deficient in some respect: low and high resolution voxels, sparse and dense point clouds, complete or incomplete. Processing of such 3D inputs is an increasingly important problem as they are the output of 3D scanners, which are becoming more accessible, and are the intermediate output of 3D computer vision algorithms. Recently, learned implicit functions have shown great promise as they produce continuous reconstructions. However, we identified two limitations in reconstruction from 3D inputs: 1) details present in the input data are not retained, and 2) poor reconstruction of articulated humans. To solve this, we propose Implicit Feature Networks (IF-Nets), which deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data retaining the nice properties of recent learned implicit functions, but critically they can also retain detail when it is present in the input data, and can reconstruct articulated humans. Our work differs from prior work in two crucial aspects. First, instead of using a single vector to encode a 3D shape, we extract a learnable 3-dimensional multi-scale tensor of deep features, which is aligned with the original Euclidean space embedding the shape. Second, instead of classifying x-y-z point coordinates directly, we classify deep features extracted from the tensor at a continuous query point. We show that this forces our model to make decisions based on global and local shape structure, as opposed to point coordinates, which are arbitrary under Euclidean transformations. Experiments demonstrate that IF-Nets outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions. Code and project website is available at https://virtualhumans.mpi-inf.mpg.de/ifnets/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仿真小学生完成签到 ,获得积分10
31秒前
kohu完成签到,获得积分10
35秒前
ldd发布了新的文献求助10
39秒前
宇文非笑完成签到 ,获得积分10
56秒前
lotus完成签到,获得积分10
2分钟前
方白秋完成签到,获得积分10
2分钟前
ldd发布了新的文献求助10
4分钟前
Lucas应助翟半仙采纳,获得10
4分钟前
墨言无殇完成签到,获得积分10
5分钟前
huvy完成签到 ,获得积分10
5分钟前
内向的白玉完成签到 ,获得积分10
8分钟前
8分钟前
翟半仙发布了新的文献求助10
8分钟前
8分钟前
turui完成签到 ,获得积分10
8分钟前
jyy应助晶杰采纳,获得10
9分钟前
脑洞疼应助科研通管家采纳,获得10
9分钟前
翟半仙发布了新的文献求助20
10分钟前
fuueer完成签到 ,获得积分10
10分钟前
lixuebin完成签到 ,获得积分10
10分钟前
上官若男应助LJYang采纳,获得30
10分钟前
翟半仙完成签到,获得积分10
10分钟前
gy完成签到,获得积分10
11分钟前
华仔应助去去去去采纳,获得30
11分钟前
11分钟前
12分钟前
去去去去发布了新的文献求助30
12分钟前
方琼燕完成签到 ,获得积分10
12分钟前
段誉完成签到 ,获得积分10
12分钟前
yanhua完成签到,获得积分20
12分钟前
12分钟前
桐桐应助Mine采纳,获得10
13分钟前
13分钟前
13分钟前
Mine发布了新的文献求助10
13分钟前
13分钟前
Ava应助Mine采纳,获得50
13分钟前
晶杰发布了新的文献求助10
15分钟前
hongxuezhi完成签到,获得积分10
15分钟前
15分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142749
求助须知:如何正确求助?哪些是违规求助? 2793651
关于积分的说明 7807057
捐赠科研通 2449903
什么是DOI,文献DOI怎么找? 1303531
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335