亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Propensity score weighting under limited overlap and model misspecification

逆概率加权 平均处理效果 倾向得分匹配 统计 加权 估计员 计量经济学 数学 熵(时间箭头) 反向 匹配(统计) 反概率 贝叶斯概率 后验概率 医学 量子力学 物理 放射科 几何学
作者
Yunji Zhou,Roland A. Matsouaka,Laine Thomas
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:29 (12): 3721-3756 被引量:19
标识
DOI:10.1177/0962280220940334
摘要

Propensity score weighting methods are often used in non-randomized studies to adjust for confounding and assess treatment effects. The most popular among them, the inverse probability weighting, assigns weights that are proportional to the inverse of the conditional probability of a specific treatment assignment, given observed covariates. A key requirement for inverse probability weighting estimation is the positivity assumption, i.e. the propensity score must be bounded away from 0 and 1. In practice, violations of the positivity assumption often manifest by the presence of limited overlap in the propensity score distributions between treatment groups. When these practical violations occur, a small number of highly influential inverse probability weights may lead to unstable inverse probability weighting estimators, with biased estimates and large variances. To mitigate these issues, a number of alternative methods have been proposed, including inverse probability weighting trimming, overlap weights, matching weights, and entropy weights. Because overlap weights, matching weights, and entropy weights target the population for whom there is equipoise (and with adequate overlap) and their estimands depend on the true propensity score, a common criticism is that these estimators may be more sensitive to misspecifications of the propensity score model. In this paper, we conduct extensive simulation studies to compare the performances of inverse probability weighting and inverse probability weighting trimming against those of overlap weights, matching weights, and entropy weights under limited overlap and misspecified propensity score models. Across the wide range of scenarios we considered, overlap weights, matching weights, and entropy weights consistently outperform inverse probability weighting in terms of bias, root mean squared error, and coverage probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity完成签到,获得积分0
9秒前
现代青枫完成签到,获得积分10
1分钟前
ybheart完成签到,获得积分10
1分钟前
FashionBoy应助zhangxr采纳,获得10
2分钟前
鲸鱼完成签到 ,获得积分10
3分钟前
Owen应助sidneyyang采纳,获得10
3分钟前
整齐的蜻蜓完成签到 ,获得积分10
4分钟前
gy完成签到,获得积分10
5分钟前
zz完成签到 ,获得积分10
5分钟前
sidneyyang完成签到,获得积分10
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
Migue应助科研通管家采纳,获得10
5分钟前
6分钟前
zhangxr发布了新的文献求助10
6分钟前
6分钟前
sidneyyang发布了新的文献求助10
6分钟前
7分钟前
Angelique发布了新的文献求助30
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Migue应助科研通管家采纳,获得10
7分钟前
赘婿应助zhangxr采纳,获得10
8分钟前
9分钟前
核桃发布了新的文献求助10
9分钟前
10分钟前
zhangxr发布了新的文献求助10
10分钟前
小巧的怜晴完成签到 ,获得积分10
10分钟前
xie完成签到 ,获得积分10
10分钟前
传奇3应助zhangxr采纳,获得30
12分钟前
12分钟前
12分钟前
星辰大海应助YUYUYU采纳,获得10
12分钟前
MIO发布了新的文献求助30
12分钟前
MIO完成签到,获得积分10
13分钟前
13分钟前
zhangxr发布了新的文献求助30
13分钟前
思源应助科研通管家采纳,获得10
13分钟前
Migue应助科研通管家采纳,获得10
13分钟前
GHOU完成签到,获得积分10
13分钟前
zhangxr完成签到,获得积分10
13分钟前
Migue应助科研通管家采纳,获得10
15分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164806
求助须知:如何正确求助?哪些是违规求助? 2815907
关于积分的说明 7910512
捐赠科研通 2475484
什么是DOI,文献DOI怎么找? 1318185
科研通“疑难数据库(出版商)”最低求助积分说明 632028
版权声明 602282