Statistic Solution for Machine Learning to Analyze Heart Disease Data

机器学习 计算机科学 人工智能 心脏病 大数据 统计的 无监督学习 数据挖掘 鉴定(生物学) 医学 数学 植物 生物 统计 心脏病学
作者
Abdur Rasool,Ran Tao,Kaleem Kashif,Waqas Khan,Promise Ricardo Agbedanu,Neeta Choudhry
标识
DOI:10.1145/3383972.3384061
摘要

Data crawling, collection and analysis have become a popular pillar for the business intelligence of big data analysis which is the latest hot-topic among the research association. Numerous tools and techniques to solve and analyze the structured and unstructured datasets are developing very quickly. The previous studies show the different approaches in the identification of the strengths and weaknesses of multiple machine learning algorithms. But, most of the approaches demand more expert knowledge base information to understand the concepts of given data. In this paper, we modernize the machine learning methods for the effective prediction of heart disease. This work deliberates the detailed process of implementation of our proposed system. The goal of this work is to find a strong and effective machine learning algorithm for disease prediction for the problem; how can doctors get fast and better results for their diagnosis of heart disease. We design a new system for disease prediction using machine learning prediction algorithms (LR, ANN and SVC) by utilizing an effective approach of ETL, OLAP and data mining. The results showed that the best machine learning algorithm is SVC with 92% accuracy for the risk prediction model. We found that subjects at 56-64 years old have a high risk of heart disease, as well as men, have more heart disease rate than women. This proposed study can be favorable for the medical practitioners in the field of healthcare, supportive practice and precautions to the heart disease patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
xrrrr发布了新的文献求助10
7秒前
8秒前
渔舟唱晚应助四毛采纳,获得10
13秒前
lyx1997发布了新的文献求助10
14秒前
科研通AI2S应助Alex采纳,获得10
16秒前
xrrrr完成签到,获得积分10
18秒前
田様应助ads采纳,获得10
20秒前
27秒前
breaddog完成签到,获得积分10
29秒前
王金金发布了新的文献求助10
31秒前
32秒前
爆米花应助Lujiamingfei采纳,获得10
33秒前
微风打了烊完成签到 ,获得积分10
35秒前
王金金完成签到,获得积分10
37秒前
38秒前
39秒前
星辰大海应助雷雪采纳,获得10
39秒前
41秒前
42秒前
liulu发布了新的文献求助10
43秒前
Alex发布了新的文献求助10
44秒前
44秒前
饱满的雨泽完成签到,获得积分10
46秒前
微笑诗柳完成签到 ,获得积分10
48秒前
Lujiamingfei发布了新的文献求助10
48秒前
后周寒生完成签到,获得积分10
51秒前
经冰夏发布了新的文献求助10
53秒前
53秒前
整齐芷文完成签到,获得积分10
54秒前
55秒前
研友_nVNBVn发布了新的文献求助10
59秒前
liulu完成签到,获得积分10
1分钟前
楠楠应助研友_nVNBVn采纳,获得50
1分钟前
接accept完成签到 ,获得积分10
1分钟前
英姑应助unbreakable采纳,获得10
1分钟前
Alex完成签到,获得积分10
1分钟前
花痴的手套完成签到 ,获得积分10
1分钟前
1分钟前
天想月完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374164
求助须知:如何正确求助?哪些是违规求助? 2991213
关于积分的说明 8744276
捐赠科研通 2674885
什么是DOI,文献DOI怎么找? 1465388
科研通“疑难数据库(出版商)”最低求助积分说明 677841
邀请新用户注册赠送积分活动 669411