已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A knowledge graph method for hazardous chemical management: Ontology design and entity identification

危险废物 计算机科学 本体论 模式(遗传算法) 任务(项目管理) 情报检索 图形 风险分析(工程) 知识管理 数据挖掘 数据科学 业务 工程类 系统工程 理论计算机科学 认识论 哲学 废物管理
作者
Xue Lin Zheng,Bing Wang,Yunmeng Zhao,Shuai Mao,Yang Tang
出处
期刊:Neurocomputing [Elsevier]
卷期号:430: 104-111 被引量:38
标识
DOI:10.1016/j.neucom.2020.10.095
摘要

Hazardous chemicals are widely used in the production activities of the chemical industry. The risk management of hazardous chemicals is critical to the safety of life and property. Hence, the effective risk management of hazardous chemicals has always been important to the chemical industry. Since a large quantity of knowledge and information of hazardous chemicals is stored in isolated databases, it is challenging to manage hazardous chemicals in an information-rich manner. Herein, we prompt a knowledge graph to overcome the information gap between decentralized databases, which would improve the hazardous chemical management. In the implementation of the knowledge graph, we design an ontology schema of hazardous chemicals management. To facilitate enterprises to master the knowledge in the full lifecycle of hazardous chemicals, including production, transportation, storage, etc., we jointly use data from companies and open data from the public domain of hazardous chemicals to construct the knowledge graph. The named entity recognition task is one of the key tasks in the implementation of the knowledge graph, which is of great significance for extracting entity information from unstructured data, namely the hazardous chemical accidents records. To extract useful information from multi-source data, we adopt the pre-trained BERT-CRF model to conduct named entity recognition for incidents records. The model achieves good results, exhibiting the effectiveness in the task of named entity recognition in the chemical industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhang完成签到 ,获得积分10
1秒前
mtt发布了新的文献求助10
2秒前
momo发布了新的文献求助10
3秒前
hulian发布了新的文献求助10
3秒前
SKF完成签到,获得积分10
4秒前
4秒前
roaring完成签到,获得积分10
4秒前
浮浮世世发布了新的文献求助20
5秒前
李希发布了新的文献求助10
5秒前
6秒前
Lucas应助dild采纳,获得30
9秒前
MrTStar完成签到 ,获得积分10
10秒前
10秒前
深年发布了新的文献求助30
11秒前
lili完成签到 ,获得积分10
11秒前
于鱼发布了新的文献求助10
13秒前
着急的青枫应助axis采纳,获得10
13秒前
shy发布了新的文献求助10
15秒前
16秒前
彭于晏应助上官采纳,获得10
17秒前
楚慈楚发布了新的文献求助10
17秒前
CipherSage应助尚尚采纳,获得10
19秒前
21秒前
BowieHuang应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得30
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
22秒前
无极微光应助Jun采纳,获得20
22秒前
共享精神应助Walden采纳,获得10
23秒前
戚琪祁完成签到,获得积分10
25秒前
27秒前
酷波er应助Jesper采纳,获得10
29秒前
29秒前
高高冰旋完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558