Theoretical and computational methods of protein liquid-liquid phase separation

内在无序蛋白质 统计力学 统计物理学 格子(音乐) 相图 物理 计算 计算机科学 生物系统 相(物质) 生物 算法 量子力学 核磁共振 声学
作者
Pengcheng Zhang,Wenyu Fang,Lei Bao,Wenbin Kang
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:69 (13): 138701-138701 被引量:2
标识
DOI:10.7498/aps.69.20200438
摘要

Liquid-liquid phase separation (LLPS) of proteins is an emerging field in the research of biophysics. Many intrinsically disordered proteins (IDPs) are known to have the ability to assemble via LLPS and to organize into protein-rich and dilute phases both in vivo and in vitro. Such a kind of phase separation of proteins plays an important role in a wide range of cellular processes, such as the formation of membraneless organelles (MLOs), signaling transduction, intracellular organization, chromatin organization, etc. In recent years, there appeared a great number of theoretical analysis, computational simulation and experimental research focusing on the physical principles of LLPS. In this article, the theoretical and computational simulation methods for the LLPS are briefly reviewed. To elucidate the physical principle of LLPS and to understand the phase behaviors of the proteins, biophysicists have introduced the concepts and theories from statistical mechanics and polymer sciences. Flory-Huggins theory and its extensions, such as mean-field model, random phase approximation (RPA) and field theory simulations, can conduce to understanding the phase diagram of the LLPS. To reveal the hidden principles in the sequence-dependent phase behaviors of different biomolecular condensates, different simulation methods including lattice models, off-lattice coarse-grained models, and all-atom simulations are introduced to perform computer simulations. By reducing the conformational space of the proteins, lattice models can capture the key points in LLPS and simplify the computations. In the off-lattice models, a polypeptide can be coarse-grained as connected particles representing repeated short peptide fragments. All-atom simulations can describe the structure of proteins at a higher resolution but consume higher computation-power. Multi-scale simulation may provide the key to understanding LLPS at both high computational efficiency and high accuracy. With these methods, we can elucidate the sequence-dependent phase behaviors of proteins at different resolutions. To sum up, it is necessary to choose the appropriate method to model LLPS processes according to the interactions within the molecules and the specific phase behaviors of the system. The simulations of LLPS can facilitate the comprehensive understanding of the key features which regulate the membraneless compartmentalization in cell biology and shed light on the design of artificial cells and the control of neurodegeneration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐乐乐乐完成签到,获得积分10
1秒前
小甑完成签到,获得积分10
1秒前
1秒前
矮小的白猫完成签到,获得积分10
2秒前
Since_2026完成签到,获得积分10
2秒前
ASUKA完成签到,获得积分10
2秒前
3秒前
3秒前
凶狠的璎完成签到,获得积分10
3秒前
清脆荟完成签到,获得积分10
3秒前
Nium完成签到,获得积分10
4秒前
4秒前
周五完成签到,获得积分10
5秒前
5秒前
xucc完成签到,获得积分10
5秒前
Dragon完成签到,获得积分10
5秒前
07734发布了新的文献求助10
5秒前
高高从云完成签到,获得积分10
6秒前
落后满天发布了新的文献求助10
6秒前
乐乐应助受伤雁荷采纳,获得10
6秒前
橘灯发布了新的文献求助10
6秒前
金桔儿完成签到,获得积分10
6秒前
Reese完成签到 ,获得积分10
6秒前
体贴的小天鹅完成签到,获得积分10
7秒前
Cheng完成签到,获得积分10
7秒前
默默诗筠完成签到,获得积分10
7秒前
所所应助玩命的靖雁采纳,获得10
7秒前
probiotics完成签到,获得积分10
7秒前
cccccckp完成签到,获得积分20
7秒前
qy发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
张杰列夫完成签到 ,获得积分10
9秒前
有梦想的人不睡觉完成签到,获得积分10
10秒前
陈瑞完成签到,获得积分10
10秒前
zou发布了新的文献求助10
10秒前
11秒前
WenyHe发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570