Determination of minor metal elements in steel using laser-induced breakdown spectroscopy combined with machine learning algorithms

单变量 多元统计 校准 激光诱导击穿光谱 人工神经网络 近似误差 特征选择 线性回归 计算机科学 算法 人工智能 材料科学 光谱学 机器学习 分析化学(期刊) 数学 统计 化学 物理 量子力学 色谱法
作者
Yuqing Zhang,Chen Sun,Liang Gao,Zengqi Yue,Sahar Shabbir,Weijie Xu,Mengting Wu,Jin Yu
出处
期刊:Spectrochimica Acta Part B: Atomic Spectroscopy [Elsevier BV]
卷期号:166: 105802-105802 被引量:47
标识
DOI:10.1016/j.sab.2020.105802
摘要

Abstract The properties of a steel are crucially influenced by the contained minor elements, including metals, such as Mn, Cr and Ni. The determination of their concentrations using laser-induced breakdown spectroscopy (LIBS) represents a great help in many application scenarios, especially with in situ and online measurement requirements. Such determination can be significantly perturbed by spectral interferences with Fe I and Fe II lines which is particularly dense in the VIS and near UV ranges. Univariate regression can sometimes, lead to calibration models with modest analytical performances. In this work, multivariate calibration models are developed using a machine learning approach. We first show the regression results with univariate models. The development of multivariate models is then briefly presented, in successive steps of data pretreatment, feature selection with SelectKBest algorithm and regression model training with back-propagation neural network (BPNN). The analytical performances obtained with the developed multivariate models are compared with those obtained with the univariate models. We demonstrate in such way, the efficiency of the machine learning approach in the development of multivariate models for calibration and prediction with LIBS spectra acquired from steel samples. In particular, the prediction trueness (relative error of prediction) and precision (relative standard deviation) for the determination of the above mentioned metal elements in steel reach the respective values of 1.13%, 2.85%, 7.20% (for Mn, Cr, Ni) and 6.68%, 3.96%, 6.52% (for Mn, Cr, Ni) with the used experimental condition and measurement protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静静发布了新的文献求助10
刚刚
gxh00完成签到,获得积分10
刚刚
刚刚
科研通AI5应助Leety采纳,获得10
刚刚
1秒前
湮灭完成签到 ,获得积分10
2秒前
keanu发布了新的文献求助20
2秒前
3秒前
3秒前
aay完成签到,获得积分10
3秒前
ikun发布了新的文献求助10
3秒前
4秒前
鬼鬼的眼睛完成签到,获得积分10
4秒前
HY完成签到,获得积分10
4秒前
关复观发布了新的文献求助10
5秒前
5秒前
pp完成签到,获得积分10
6秒前
6秒前
7秒前
Tata应助如风随水采纳,获得10
7秒前
科研通AI5应助彩色菲鹰采纳,获得10
7秒前
风的季节完成签到,获得积分0
8秒前
8秒前
wu发布了新的文献求助10
8秒前
洪七公完成签到,获得积分10
8秒前
9秒前
情怀应助Gig采纳,获得10
9秒前
kenchilie完成签到 ,获得积分10
10秒前
张佩航完成签到,获得积分10
10秒前
10秒前
11秒前
撕佳发布了新的文献求助30
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
xy发布了新的文献求助10
14秒前
datang完成签到,获得积分10
14秒前
不是一个名字完成签到,获得积分10
15秒前
搜集达人应助wsgdhz采纳,获得10
15秒前
Ricardo完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025