Determination of minor metal elements in steel using laser-induced breakdown spectroscopy combined with machine learning algorithms

单变量 多元统计 校准 激光诱导击穿光谱 人工神经网络 近似误差 特征选择 线性回归 计算机科学 算法 人工智能 材料科学 光谱学 机器学习 分析化学(期刊) 数学 统计 化学 物理 量子力学 色谱法
作者
Yuqing Zhang,Chen Sun,Liang Gao,Zengqi Yue,Sahar Shabbir,Weijie Xu,Mengting Wu,Jin Yu
出处
期刊:Spectrochimica Acta Part B: Atomic Spectroscopy [Elsevier BV]
卷期号:166: 105802-105802 被引量:47
标识
DOI:10.1016/j.sab.2020.105802
摘要

Abstract The properties of a steel are crucially influenced by the contained minor elements, including metals, such as Mn, Cr and Ni. The determination of their concentrations using laser-induced breakdown spectroscopy (LIBS) represents a great help in many application scenarios, especially with in situ and online measurement requirements. Such determination can be significantly perturbed by spectral interferences with Fe I and Fe II lines which is particularly dense in the VIS and near UV ranges. Univariate regression can sometimes, lead to calibration models with modest analytical performances. In this work, multivariate calibration models are developed using a machine learning approach. We first show the regression results with univariate models. The development of multivariate models is then briefly presented, in successive steps of data pretreatment, feature selection with SelectKBest algorithm and regression model training with back-propagation neural network (BPNN). The analytical performances obtained with the developed multivariate models are compared with those obtained with the univariate models. We demonstrate in such way, the efficiency of the machine learning approach in the development of multivariate models for calibration and prediction with LIBS spectra acquired from steel samples. In particular, the prediction trueness (relative error of prediction) and precision (relative standard deviation) for the determination of the above mentioned metal elements in steel reach the respective values of 1.13%, 2.85%, 7.20% (for Mn, Cr, Ni) and 6.68%, 3.96%, 6.52% (for Mn, Cr, Ni) with the used experimental condition and measurement protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不不鱼完成签到,获得积分10
刚刚
呆萌的鼠标完成签到 ,获得积分0
刚刚
SYLH应助zhencheng采纳,获得10
刚刚
追寻的丹烟完成签到,获得积分10
1秒前
reading gene发布了新的文献求助10
1秒前
Lily完成签到,获得积分10
2秒前
Hello应助WAN采纳,获得10
3秒前
至幸完成签到,获得积分10
3秒前
swby完成签到,获得积分10
4秒前
Nalisher完成签到,获得积分10
4秒前
4秒前
4秒前
熠熠完成签到,获得积分10
5秒前
6秒前
6秒前
轩辕访波发布了新的文献求助10
7秒前
7秒前
MrH完成签到,获得积分10
8秒前
陶远望完成签到,获得积分10
8秒前
柒柒完成签到 ,获得积分10
8秒前
lasfjas完成签到,获得积分10
8秒前
HHHHH完成签到,获得积分10
8秒前
8秒前
FFF发布了新的文献求助10
9秒前
熊猫盖浇饭完成签到,获得积分10
9秒前
柠檬完成签到 ,获得积分10
9秒前
慕慕倾完成签到,获得积分10
10秒前
Mine发布了新的文献求助10
10秒前
共享精神应助甜美追命采纳,获得10
11秒前
润润轩轩完成签到 ,获得积分10
11秒前
ROMANTIC完成签到 ,获得积分10
11秒前
大气小小完成签到,获得积分20
11秒前
ywindm完成签到,获得积分10
12秒前
12秒前
jichups完成签到,获得积分10
12秒前
我是老大应助YQ采纳,获得10
12秒前
凉雨渲完成签到,获得积分10
13秒前
wad1314完成签到,获得积分10
13秒前
size_t完成签到,获得积分10
13秒前
温婉的凝丹完成签到 ,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259