亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved EMD-Based Complex Prediction Model for Wind Power Forecasting

风电预测 风力发电 人工神经网络 希尔伯特-黄变换 聚类分析 计算机科学 电力系统 风速 数据挖掘 混乱的 概率预测 人工智能 机器学习 功率(物理) 工程类 气象学 物理 量子力学 概率逻辑 电气工程 滤波器(信号处理) 计算机视觉
作者
Oveis Abedinia,Mohamed Lotfi,Mehdi Bagheri,Behrouz Sobhani,Miadreza Shafie‐khah,João P. S. Catalào
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 2790-2802 被引量:191
标识
DOI:10.1109/tste.2020.2976038
摘要

As a response to rapidly increasing penetration of wind power generation in modern electric power grids, accurate prediction models are crucial to deal with the associated uncertainties. Due to the highly volatile and chaotic nature of wind power, employing complex intelligent prediction tools is necessary. Accordingly, this article proposes a novel improved version of empirical mode decomposition (IEMD) to decompose wind measurements. The decomposed signal is provided as input to a hybrid forecasting model built on a bagging neural network (BaNN) combined with K-means clustering. Moreover, a new intelligent optimization method named ChB-SSO is applied to automatically tune the BaNN parameters. The performance of the proposed forecasting framework is tested using different seasonal subsets of real-world wind farm case studies (Alberta and Sotavento) through a comprehensive comparative analysis against other well-known prediction strategies. Furthermore, to analyze the effectiveness of the proposed framework, different forecast horizons have been considered in different test cases. Several error assessment criteria were used and the obtained results demonstrate the superiority of the proposed method for wind forecasting compared to other methods for all test cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
承乐应助flyingpig采纳,获得10
5秒前
拼搏的丹琴完成签到,获得积分10
8秒前
11秒前
yaooo完成签到 ,获得积分10
12秒前
桃核发布了新的文献求助10
16秒前
happyday完成签到,获得积分10
19秒前
急诊守夜人完成签到 ,获得积分10
19秒前
19秒前
思源应助天使她男人采纳,获得10
20秒前
桃核完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
28秒前
32秒前
代号K发布了新的文献求助30
34秒前
来栖暁完成签到,获得积分10
35秒前
39秒前
40秒前
CAT完成签到,获得积分10
40秒前
阿俊完成签到 ,获得积分10
43秒前
44秒前
畅快枕头完成签到 ,获得积分0
48秒前
樱悼柳雪完成签到,获得积分10
50秒前
CAT发布了新的文献求助10
1分钟前
1分钟前
科目三应助JEK采纳,获得10
1分钟前
Lucas应助天使她男人采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
gty发布了新的文献求助10
1分钟前
JEK发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606552
求助须知:如何正确求助?哪些是违规求助? 4690976
关于积分的说明 14866654
捐赠科研通 4706811
什么是DOI,文献DOI怎么找? 2542800
邀请新用户注册赠送积分活动 1508189
关于科研通互助平台的介绍 1472276