Improved EMD-Based Complex Prediction Model for Wind Power Forecasting

风电预测 风力发电 人工神经网络 希尔伯特-黄变换 聚类分析 计算机科学 电力系统 风速 数据挖掘 混乱的 概率预测 人工智能 机器学习 功率(物理) 工程类 气象学 物理 量子力学 概率逻辑 电气工程 滤波器(信号处理) 计算机视觉
作者
Oveis Abedinia,Mohamed Lotfi,Mehdi Bagheri,Behrouz Sobhani,Miadreza Shafie‐khah,João P. S. Catalào
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 2790-2802 被引量:191
标识
DOI:10.1109/tste.2020.2976038
摘要

As a response to rapidly increasing penetration of wind power generation in modern electric power grids, accurate prediction models are crucial to deal with the associated uncertainties. Due to the highly volatile and chaotic nature of wind power, employing complex intelligent prediction tools is necessary. Accordingly, this article proposes a novel improved version of empirical mode decomposition (IEMD) to decompose wind measurements. The decomposed signal is provided as input to a hybrid forecasting model built on a bagging neural network (BaNN) combined with K-means clustering. Moreover, a new intelligent optimization method named ChB-SSO is applied to automatically tune the BaNN parameters. The performance of the proposed forecasting framework is tested using different seasonal subsets of real-world wind farm case studies (Alberta and Sotavento) through a comprehensive comparative analysis against other well-known prediction strategies. Furthermore, to analyze the effectiveness of the proposed framework, different forecast horizons have been considered in different test cases. Several error assessment criteria were used and the obtained results demonstrate the superiority of the proposed method for wind forecasting compared to other methods for all test cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Eternity2025采纳,获得10
1秒前
1秒前
2秒前
吉田清子发布了新的文献求助10
2秒前
2秒前
田振扬完成签到,获得积分10
3秒前
jsh完成签到,获得积分10
3秒前
甜甜亦丝完成签到,获得积分10
3秒前
欧清完成签到,获得积分10
3秒前
parpate发布了新的文献求助10
4秒前
Owen应助林途采纳,获得10
6秒前
6秒前
renren发布了新的文献求助10
6秒前
关晚竹完成签到,获得积分20
7秒前
科研通AI5应助HughWang采纳,获得30
7秒前
8秒前
8秒前
11秒前
CipherSage应助关晚竹采纳,获得10
14秒前
14秒前
今天想要吃饭完成签到,获得积分10
15秒前
柊苒发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
AskNature完成签到,获得积分10
17秒前
孙颢然完成签到 ,获得积分10
18秒前
18秒前
陶醉雪青应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
Tourist应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
lilili应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971