The power of deep learning to ligand-based novel drug discovery

可解释性 人工智能 深度学习 计算机科学 判别式 机器学习 生成语法 人工神经网络 药物发现 卷积神经网络 循环神经网络 生物信息学 生物
作者
Igor I. Baskin
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:15 (7): 755-764 被引量:69
标识
DOI:10.1080/17460441.2020.1745183
摘要

Introduction Deep discriminative and generative neural-network models are becoming an integral part of the modern approach to ligand-based novel drug discovery. The variety of different architectures of neural networks, the methods of their training, and the procedures of generating new molecules require expert knowledge to choose the most suitable approach.Areas covered Three different approaches to deep learning use in ligand-based drug discovery are considered: virtual screening, neural generative models, and mutation-based structure generation. Several architectures of neural networks for building either discriminative or generative models are considered in this paper, including deep multilayer neural networks, different kinds of convolutional neural networks, recurrent neural networks, and several types of autoencoders. Several kinds of learning frameworks are also considered, including adversarial learning and reinforcement learning. Different types of representations for generating molecules, including SMILES, graphs, and several alternative string representations are also considered.Expert opinion Two kinds of problem should be solved in order to make the models built using deep neural networks, especially generative models, a valuable option in ligand-based drug discovery: the issue of interpretability and explainability of deep-learning models and the issue of synthetic accessibility of novel compounds designed by deep-learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放素完成签到 ,获得积分0
1秒前
1秒前
调皮冰姬完成签到,获得积分10
1秒前
1秒前
贪玩代桃发布了新的文献求助10
2秒前
3秒前
3秒前
止咳宝完成签到,获得积分10
3秒前
长的帅完成签到,获得积分10
3秒前
王飞跃发布了新的文献求助10
4秒前
4秒前
4秒前
invaded发布了新的文献求助10
4秒前
6秒前
Owen应助seven采纳,获得10
6秒前
小Z完成签到,获得积分10
7秒前
7秒前
suliang发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
KING发布了新的文献求助10
10秒前
KKK发布了新的文献求助10
10秒前
12秒前
mugglea完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
斯文败类应助余南采纳,获得10
15秒前
lighting完成签到 ,获得积分10
16秒前
16秒前
zzzzz发布了新的文献求助10
17秒前
17秒前
17秒前
LL完成签到 ,获得积分10
17秒前
77发布了新的文献求助10
17秒前
英吉利25发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643099
求助须知:如何正确求助?哪些是违规求助? 4760606
关于积分的说明 15020012
捐赠科研通 4801508
什么是DOI,文献DOI怎么找? 2566806
邀请新用户注册赠送积分活动 1524714
关于科研通互助平台的介绍 1484256