The power of deep learning to ligand-based novel drug discovery

可解释性 人工智能 深度学习 计算机科学 判别式 机器学习 生成语法 人工神经网络 药物发现 卷积神经网络 循环神经网络 生物信息学 生物
作者
Igor I. Baskin
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:15 (7): 755-764 被引量:61
标识
DOI:10.1080/17460441.2020.1745183
摘要

Introduction Deep discriminative and generative neural-network models are becoming an integral part of the modern approach to ligand-based novel drug discovery. The variety of different architectures of neural networks, the methods of their training, and the procedures of generating new molecules require expert knowledge to choose the most suitable approach.Areas covered Three different approaches to deep learning use in ligand-based drug discovery are considered: virtual screening, neural generative models, and mutation-based structure generation. Several architectures of neural networks for building either discriminative or generative models are considered in this paper, including deep multilayer neural networks, different kinds of convolutional neural networks, recurrent neural networks, and several types of autoencoders. Several kinds of learning frameworks are also considered, including adversarial learning and reinforcement learning. Different types of representations for generating molecules, including SMILES, graphs, and several alternative string representations are also considered.Expert opinion Two kinds of problem should be solved in order to make the models built using deep neural networks, especially generative models, a valuable option in ligand-based drug discovery: the issue of interpretability and explainability of deep-learning models and the issue of synthetic accessibility of novel compounds designed by deep-learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酆不二发布了新的文献求助10
刚刚
1秒前
共享精神应助公孙朝雨采纳,获得10
1秒前
英俊的铭应助张桐采纳,获得10
1秒前
勤恳绝义完成签到,获得积分20
2秒前
叨叨完成签到,获得积分10
3秒前
222完成签到 ,获得积分10
3秒前
dryyu发布了新的文献求助20
3秒前
mooncakeshi发布了新的文献求助10
3秒前
若有缘由完成签到,获得积分10
4秒前
4秒前
关圣译发布了新的文献求助10
4秒前
PIGG发布了新的文献求助10
4秒前
5秒前
cchuangxi发布了新的文献求助10
5秒前
5秒前
5秒前
cc发布了新的文献求助10
6秒前
白煮蛋完成签到,获得积分10
6秒前
6秒前
hhh完成签到 ,获得积分10
7秒前
隐形曼青应助teamguichu采纳,获得10
7秒前
8秒前
zz发布了新的文献求助10
8秒前
Fan完成签到,获得积分10
8秒前
9秒前
清爽灰狼发布了新的文献求助10
10秒前
宜醉宜游宜睡应助shirley采纳,获得10
11秒前
丘比特应助风中作画采纳,获得10
11秒前
酆不二完成签到,获得积分10
11秒前
quhayley应助勤恳绝义采纳,获得10
12秒前
12秒前
yangquanquan发布了新的文献求助10
13秒前
foregan完成签到,获得积分10
13秒前
13秒前
13秒前
喵誉玉发布了新的文献求助30
14秒前
14秒前
顺利的小伙完成签到 ,获得积分10
14秒前
Ripples发布了新的文献求助20
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152657
求助须知:如何正确求助?哪些是违规求助? 2803891
关于积分的说明 7856198
捐赠科研通 2461571
什么是DOI,文献DOI怎么找? 1310444
科研通“疑难数据库(出版商)”最低求助积分说明 629205
版权声明 601782