The power of deep learning to ligand-based novel drug discovery

可解释性 人工智能 深度学习 计算机科学 判别式 机器学习 生成语法 人工神经网络 药物发现 卷积神经网络 循环神经网络 生物信息学 生物
作者
Igor I. Baskin
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:15 (7): 755-764 被引量:69
标识
DOI:10.1080/17460441.2020.1745183
摘要

Introduction Deep discriminative and generative neural-network models are becoming an integral part of the modern approach to ligand-based novel drug discovery. The variety of different architectures of neural networks, the methods of their training, and the procedures of generating new molecules require expert knowledge to choose the most suitable approach.Areas covered Three different approaches to deep learning use in ligand-based drug discovery are considered: virtual screening, neural generative models, and mutation-based structure generation. Several architectures of neural networks for building either discriminative or generative models are considered in this paper, including deep multilayer neural networks, different kinds of convolutional neural networks, recurrent neural networks, and several types of autoencoders. Several kinds of learning frameworks are also considered, including adversarial learning and reinforcement learning. Different types of representations for generating molecules, including SMILES, graphs, and several alternative string representations are also considered.Expert opinion Two kinds of problem should be solved in order to make the models built using deep neural networks, especially generative models, a valuable option in ligand-based drug discovery: the issue of interpretability and explainability of deep-learning models and the issue of synthetic accessibility of novel compounds designed by deep-learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RHYMOF完成签到,获得积分10
刚刚
聪明的芳芳完成签到 ,获得积分10
刚刚
英姑应助茶色玻璃采纳,获得10
刚刚
大洁完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
rezehua发布了新的文献求助10
1秒前
研友_Z1WkgL完成签到,获得积分10
1秒前
可达鸭应助hhj采纳,获得10
1秒前
aaa发布了新的文献求助10
1秒前
2秒前
现代的访曼应助11采纳,获得20
2秒前
Hello应助爱学习的小胡采纳,获得10
2秒前
BU会完成签到,获得积分10
2秒前
joker发布了新的文献求助10
3秒前
3秒前
123发布了新的文献求助10
3秒前
Lay完成签到,获得积分10
4秒前
生动凡梦发布了新的文献求助10
4秒前
JerryZ发布了新的文献求助10
5秒前
6秒前
gy完成签到 ,获得积分10
6秒前
鳗鱼歌曲完成签到,获得积分10
6秒前
6秒前
fys131415发布了新的文献求助10
7秒前
Wang发布了新的文献求助10
7秒前
7秒前
贪玩丸子完成签到 ,获得积分10
7秒前
嘻嘻完成签到,获得积分10
8秒前
酷酷的皮皮虾完成签到,获得积分10
8秒前
还单身的不二完成签到,获得积分20
8秒前
昏睡的蟠桃应助小包包采纳,获得50
9秒前
Zr完成签到,获得积分10
9秒前
seedcui完成签到,获得积分10
10秒前
时尚的闭月完成签到 ,获得积分10
10秒前
10秒前
10秒前
果实发布了新的文献求助10
10秒前
拉布拉多多不多完成签到,获得积分10
11秒前
daisies应助小灵通采纳,获得20
11秒前
爆米花应助吃不胖的采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128