The power of deep learning to ligand-based novel drug discovery

可解释性 人工智能 深度学习 计算机科学 判别式 机器学习 生成语法 人工神经网络 药物发现 卷积神经网络 循环神经网络 生物信息学 生物
作者
Igor I. Baskin
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:15 (7): 755-764 被引量:61
标识
DOI:10.1080/17460441.2020.1745183
摘要

Introduction Deep discriminative and generative neural-network models are becoming an integral part of the modern approach to ligand-based novel drug discovery. The variety of different architectures of neural networks, the methods of their training, and the procedures of generating new molecules require expert knowledge to choose the most suitable approach.Areas covered Three different approaches to deep learning use in ligand-based drug discovery are considered: virtual screening, neural generative models, and mutation-based structure generation. Several architectures of neural networks for building either discriminative or generative models are considered in this paper, including deep multilayer neural networks, different kinds of convolutional neural networks, recurrent neural networks, and several types of autoencoders. Several kinds of learning frameworks are also considered, including adversarial learning and reinforcement learning. Different types of representations for generating molecules, including SMILES, graphs, and several alternative string representations are also considered.Expert opinion Two kinds of problem should be solved in order to make the models built using deep neural networks, especially generative models, a valuable option in ligand-based drug discovery: the issue of interpretability and explainability of deep-learning models and the issue of synthetic accessibility of novel compounds designed by deep-learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oliver501发布了新的文献求助10
刚刚
3秒前
4秒前
科研路上的干饭桶完成签到,获得积分10
4秒前
所所应助YYJ25采纳,获得10
4秒前
传奇3应助ubiqutin采纳,获得10
5秒前
Wiggins完成签到,获得积分10
5秒前
adi完成签到,获得积分10
5秒前
小马甲应助猫了个喵采纳,获得10
5秒前
浮浮世世给浮浮世世的求助进行了留言
6秒前
海鸥海鸥发布了新的文献求助10
7秒前
田様应助稀罕你采纳,获得10
8秒前
汤浩宏发布了新的文献求助10
9秒前
天天完成签到 ,获得积分10
9秒前
ray发布了新的文献求助10
9秒前
Hello应助wang采纳,获得10
10秒前
qq完成签到 ,获得积分10
10秒前
Jasper应助zoloft采纳,获得10
10秒前
年华完成签到,获得积分10
10秒前
12秒前
充电宝应助伯赏诗霜采纳,获得50
14秒前
ubiqutin完成签到,获得积分10
15秒前
大模型应助Anquan采纳,获得30
15秒前
搜集达人应助饱满的紫伊采纳,获得30
16秒前
科研通AI5应助海鸥海鸥采纳,获得10
17秒前
ubiqutin发布了新的文献求助10
17秒前
18秒前
浮浮世世发布了新的文献求助50
18秒前
zoloft完成签到,获得积分10
20秒前
忆韵完成签到,获得积分10
20秒前
susu完成签到,获得积分20
22秒前
隐形曼青应助YYJ25采纳,获得10
23秒前
23秒前
zoloft发布了新的文献求助10
24秒前
yhc完成签到,获得积分10
24秒前
季生发布了新的文献求助60
25秒前
老孙完成签到,获得积分10
26秒前
27秒前
汤浩宏完成签到,获得积分10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849