Portable near-infrared spectroscopy for rapid authentication of adulterated paprika powder

掺假者 偏最小二乘回归 阿拉伯树胶 食品科学 阿拉伯树胶 淀粉 化学 数学 线性判别分析 色谱法 植物 统计 生物
作者
Marciano M. Oliveira,J.P. Cruz‐Tirado,Jussara V. Roque,Reinaldo F. Teófilo,Douglas Fernandes Barbin
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:87: 103403-103403 被引量:93
标识
DOI:10.1016/j.jfca.2019.103403
摘要

Paprika powder is a widely consumed spice, making it an attractive target for adulteration, which is not easily detected. In this study, a portable near-infrared (NIR) spectrometer was used for fast detection of paprika adulteration. Nine paprika samples from five suppliers were adulterated with potato starch, acacia gum and annatto at different concentrations (0–36% by weight of potato starch and acacia gum, and 0–18% by weight of annatto). The NIR spectrum of each mixture (n = 315) was used as predictors to determine adulteration by partial least squares-discriminant analysis (PLS-DA) and partial least squares regression (PLSR). First, PLS-DA was applied to discriminate between adulterated and non-adulterated samples, as well as the type of adulterant. This method proved to be efficient, with specificity greater than 90 % and error rate lower than 2 %, for all models constructed. PLSR was used to predict the concentration of adulterants in paprika samples. In addition, PLSR models with reduced number of wavelengths (predictors) were built by selecting the variables with larger weights on the regression coefficients. Coefficient of prediction (R2p) and root mean square errors of prediction (RMSEP) obtained were 0.95 and 2.12; 0.97 and 1.68; 0.87 and 1.74, for potato starch, acacia gum and annatto, respectively. In conclusion, results showed that NIR spectroscopy is a useful screening technique for identification and quantification of adulteration in paprika.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzilan发布了新的文献求助10
刚刚
刚刚
细品岁月完成签到 ,获得积分10
刚刚
细心书蕾完成签到 ,获得积分10
1秒前
无花果应助l11x29采纳,获得10
3秒前
3秒前
老詹头发布了新的文献求助10
3秒前
思源应助叫滚滚采纳,获得10
4秒前
5秒前
刘歌完成签到 ,获得积分10
5秒前
阿巡完成签到,获得积分10
5秒前
Chen完成签到,获得积分10
7秒前
LSH970829发布了新的文献求助10
7秒前
哈哈哈完成签到 ,获得积分10
8秒前
汤姆完成签到,获得积分10
8秒前
10秒前
10秒前
翠翠完成签到,获得积分10
11秒前
11秒前
LSH970829完成签到,获得积分10
12秒前
Lyg完成签到,获得积分20
13秒前
坚强的樱发布了新的文献求助10
13秒前
baodingning完成签到,获得积分10
14秒前
14秒前
公茂源发布了新的文献求助30
14秒前
热爱完成签到,获得积分10
15秒前
16秒前
叫滚滚发布了新的文献求助10
17秒前
星瑆心完成签到,获得积分10
17秒前
啦啦啦啦啦完成签到,获得积分10
18秒前
Lyg发布了新的文献求助10
18秒前
Dksido完成签到,获得积分10
19秒前
兰博基尼奥完成签到,获得积分10
19秒前
热情芷荷发布了新的文献求助10
21秒前
random完成签到,获得积分10
22秒前
22秒前
果果瑞宁完成签到,获得积分10
22秒前
23秒前
机智小虾米完成签到,获得积分20
23秒前
goldenfleece完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808