Advances in the mechanism of cereal/legume intercropping promotion of symbiotic nitrogen fixation

间作 固氮 豆类 农学 机制(生物学) 氮气 生物 农林复合经营 化学 物理 量子力学 有机化学
作者
Xinyu Wang,Yingzhi Gao
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:65 (2-3): 142-149 被引量:25
标识
DOI:10.1360/tb-2019-0138
摘要

Biological nitrogen fixation by rhizobia in symbiotic association with legumes is a valuable N source for agroecosystems, and thus it is crucial for increased sustainability of agricultural production. Previous studies found that legume and cereal intercropping can promote symbiotic nitrogen fixation mainly due to rhizosphere nitrogen depletion by the cereal and that soil mineral nitrogen is absorbed more by cereals than legumes, which forces the legume to increase its reliance on symbiotic nitrogen fixation. However, in addition to the nitrogen depletion theory in the rhizosphere, stoichiometry (such as nitrogen and phosphorus coupling) and molecular regulation mechanisms are also important in understanding legume nitrogen fixation. The legume usually maintains a stable stoichiometric relationship between nitrogen and phosphorus. Symbiotic nitrogen fixation of legumes tends to have a high demand for phosphorus, mainly because nitrogen fixation by legumes is a high energy-consuming process, and the required energy is directly provided by ATP. Therefore, when the phosphorus obtained by the intercropped legume is insufficient to meet the increase in symbiotic nitrogen fixation, legume growth is limited by phosphorus. Under phosphorus limitation, the phosphorus uptake strategy of the legume can be stimulated, i.e. by increasing the infection of arbuscular mycorrhizal fungi (AMF) and secretion of root exudates. The AMF mycelia of legumes can extend beyond the rhizosphere, linking the roots to the surrounding soil microhabitats and expanding the area of phosphorus absorbed by the roots. On the other hand, mobilizing rhizosphere insoluble phosphorus through root exudates is also an important pathway for improving phosphorus utilization. Increased soil phosphorus availability promotes plant growth and increased allocation of carbon (C) sources to roots and nodules, resulting in a larger root system or greater nodule formation, finally higher symbiotic nitrogen fixation. In addition, the formation of root nodules is influenced by rhizosphere talk between the cereal and legume, which are directly related to the level of nitrogen. A recent study found that under low N concentration conditions, cereal root exudates stimulated flavonoid biosynthesis and secretion partly through upregulating expression of the Chalcone-flavanone isomerase gene ( CFI ) in legumes. Meanwhile, an auxin-responsive GH3 family gene ( GH3.1 ) and the nodulation gene ENODL2 displayed significant increases, suggesting that nodulation continues under the regulation of auxin signaling and the nodulin-like protein. At nodule maturity, cereal root exudates continue to up-regulate key nodulation genes, such as NODL4 , ENOD93 and the N fixation gene FixI3 , finally promoting symbiotic nitrogen fixation. Moreover, a high concentration of soil mineral N significantly suppressed expression of the early nodulin gene NIN in Lotus corniculatus , which inhibited nodulation and symbiotic nitrogen fixation. In the cereal/legume intercropping system, rhizosphere nitrogen depletion can relieve the inhibition of nitrate on the expression of key nodulation and N fixation genes, thus promoting nodulation and symbiotic nitrogen fixation. In conclusion, intercropping can promote nitrogen uptake and optimize nitrogen use efficiency through the coupling effects of rhizosphere nitrogen depletion, phosphorus mobilization and the regulation of nitrogen fixation genes. This review will help improve our understanding of the mechanism of symbiotic nitrogen fixation in the cereal/legume intercropping system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助huang采纳,获得10
刚刚
小橙子发布了新的文献求助10
刚刚
infinite完成签到,获得积分10
1秒前
两条鱼发布了新的文献求助10
2秒前
潇潇微雨发布了新的文献求助10
2秒前
Ava应助cathylll采纳,获得30
2秒前
科研通AI5应助lilac采纳,获得10
2秒前
jia完成签到,获得积分10
3秒前
亦犹未进完成签到,获得积分10
3秒前
orixero应助肥仔ffff采纳,获得20
3秒前
3秒前
漂泊1991完成签到,获得积分10
3秒前
3秒前
4秒前
weimu完成签到,获得积分20
4秒前
4秒前
怡然若雁完成签到,获得积分10
4秒前
1234star完成签到,获得积分10
4秒前
4秒前
zhang完成签到,获得积分10
5秒前
5秒前
慕青应助暴躁的小松鼠采纳,获得10
5秒前
。。发布了新的文献求助10
6秒前
复杂的元绿完成签到,获得积分10
6秒前
6秒前
安安完成签到 ,获得积分10
7秒前
科研通AI2S应助山雀采纳,获得10
7秒前
7秒前
孟123发布了新的文献求助10
7秒前
汉堡包应助小橙子采纳,获得10
8秒前
pny发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
小虫发布了新的文献求助10
10秒前
正之发布了新的文献求助10
10秒前
研友_VZG7GZ应助zzzzzz采纳,获得10
11秒前
丘比特应助小菜采纳,获得10
12秒前
科研通AI5应助加菲采纳,获得10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487567
求助须知:如何正确求助?哪些是违规求助? 3075589
关于积分的说明 9141097
捐赠科研通 2767807
什么是DOI,文献DOI怎么找? 1518753
邀请新用户注册赠送积分活动 703329
科研通“疑难数据库(出版商)”最低求助积分说明 701779