Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst

双金属片 催化作用 氢溢流 拉曼光谱 化学物理 原子单位 纳米尺度 材料科学 化学工程 密度泛函理论 氢气储存 化学 纳米技术 多相催化 计算化学 有机化学 工程类 物理 光学 量子力学
作者
Hao Yin,Li-Qing Zheng,Wei Fang,Yin‐Hung Lai,Nikolaus Porenta,Guillaume Goubert,Hua Zhang,Hai‐Sheng Su,Bin Ren,Jeremy O. Richardson,Jian‐Feng Li,Renato Zenobi
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:3 (10): 834-842 被引量:135
标识
DOI:10.1038/s41929-020-00511-y
摘要

Understanding the mechanism of catalytic hydrogenation at the local environment requires chemical and topographic information involving catalytic sites, active hydrogen species, and their spatial distribution. Here we used tip-enhanced Raman spectroscopy (TERS) to study the catalytic hydrogenation of chloronitrobenzenethiol on a well-defined Pd(submonolayer)/Au(111) bimetallic catalyst ( $$p_{\rm{H}_{2}}$$ = 1.5 bar, 298 K), where the surface topography and chemical fingerprint information were simultaneously mapped with nanoscale resolution (~10 nm). TERS imaging of the surface after catalytic hydrogenation confirms that the reaction occurs beyond the location of Pd sites. The results demonstrate that hydrogen spillover accelerates hydrogenation at Au sites as far as 20 nm from the bimetallic Pd/Au boundary. Density functional theory was used to elucidate the thermodynamics of interfacial hydrogen transfers. We demonstrate TERS to be a powerful analytical tool that provides a unique approach to spatially investigate the local structure–reactivity relationship in catalysis. Visualizing catalytic processes at the nanoscale is crucial to establish structure–activity relations, but remains very challenging. Here, hydrogen spillover is revealed with a 10 nm spatial resolution during hydrogenation of chloronitrobenzenethiol on a bimetallic Pd/Au catalyst by means of tip-enhanced Raman spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助追风少年采纳,获得10
1秒前
温柔樱桃发布了新的文献求助10
1秒前
cdercder完成签到,获得积分0
1秒前
2秒前
2秒前
linliqing发布了新的文献求助10
2秒前
3秒前
无极微光应助散歌小调采纳,获得20
3秒前
4秒前
自然的道天关注了科研通微信公众号
4秒前
高贵的哈密瓜数据线完成签到,获得积分10
5秒前
5秒前
5秒前
火乐头发布了新的文献求助10
6秒前
樱悼柳雪发布了新的文献求助10
7秒前
7秒前
MiManchi发布了新的文献求助10
7秒前
7秒前
9秒前
花花完成签到,获得积分10
9秒前
三三发布了新的文献求助10
10秒前
Komorebi发布了新的文献求助10
10秒前
10秒前
暖落完成签到,获得积分10
12秒前
sanmumu发布了新的文献求助10
12秒前
滴滴哒发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
代沁完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
16秒前
威武好吐司完成签到 ,获得积分10
16秒前
充电宝应助谢书南采纳,获得10
16秒前
16秒前
爆米花应助zzzz采纳,获得10
17秒前
烟花应助三三采纳,获得10
17秒前
田様应助双子土豆泥采纳,获得10
18秒前
yuhejiang发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171