Designing Dynamic Materials from Dynamic Bonds to Macromolecular Architecture

聚合物 韧性 计算机科学 材料科学 复合材料 纳米技术
作者
Nethmi De Alwis Watuthanthrige,Progyateg Chakma,Dominik Konkolewicz
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:3 (3): 231-247 被引量:56
标识
DOI:10.1016/j.trechm.2020.12.005
摘要

Dynamic polymer materials have characteristic bond exchange behavior, which can be autonomous or in response to external stimuli. Bond exchange in dynamic materials enables numerous applications and enhancement of the material properties. Beyond the precise dynamic chemistries, architectural features of the polymers also play a vital role in governing dynamic material properties. Polymer chain characteristics, crosslink density and distribution, and shapes of the polymers are key architectural features. These architectural features can impact the thermomechanical properties of dynamic polymer materials, including material strength, phase transition and macroscopic flow temperatures, and creep and relaxation behavior, among others. New developments in control over architectural features in dynamic materials have inspired new avenues to design powerful materials with advanced properties. Introducing dynamic and exchangeable bonds can breathe life into polymers by imparting self-healing, enhanced toughness, or adaptability to the material. Synergies between the exchangeable bonds and the polymer's architectural features can facilitate the dynamic exchange pathways and tune the material's thermal and mechanical properties. In recent years, numerous dynamic chemistries and architectural variations have been used to develop superior dynamic polymer materials. This article highlights the diversity of dynamic bonds and the polymer architectures used in dynamic polymers, with a focus on how the interplay of dynamic bonds and polymer architecture can be used to develop advanced materials. Finally, this article highlights how judicious choice of the polymer's architectural features could be used to realize applications of dynamic materials. Introducing dynamic and exchangeable bonds can breathe life into polymers by imparting self-healing, enhanced toughness, or adaptability to the material. Synergies between the exchangeable bonds and the polymer's architectural features can facilitate the dynamic exchange pathways and tune the material's thermal and mechanical properties. In recent years, numerous dynamic chemistries and architectural variations have been used to develop superior dynamic polymer materials. This article highlights the diversity of dynamic bonds and the polymer architectures used in dynamic polymers, with a focus on how the interplay of dynamic bonds and polymer architecture can be used to develop advanced materials. Finally, this article highlights how judicious choice of the polymer's architectural features could be used to realize applications of dynamic materials. crosslinked material containing exchangeable or dynamic covalent bonds, enabling the material to adapt or be reprocessed under appropriate conditions. gradual shape deformation or strain under constant applied stress. materials that contain exchangeable or dynamic bonds that can interchange either autonomically or under stimulus. analysis used to measure a material's mechanical response as a function of applied strain, temperature, and frequency. a simple analysis that relates molecular weight of polymers to their glass transition temperatures using the Flory-Fox equation proposed by Paul J. Flory in 1950. temperature range of the polymer material where the substrate changes its state from a rigid, glassy stage to a flexible, rubbery stage. the distribution or range of molecular weights present in a polymer sample. constant storage moduli in the lower frequency range or in the region above the glass transition temperature. dissipation of load or stress over time at a constant strain. temperature at which the polymer network becomes effectively frozen and nondynamic and lower temperature for recycling of vitrimer materials. class of covalent networks consisting of thermosetting or similarly behaving polymers that can change their topology by thermally activated bond exchange reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丁鹏笑完成签到 ,获得积分0
1秒前
wQ1ng应助维洛尼亚采纳,获得10
1秒前
111完成签到,获得积分20
1秒前
2秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
严逍遥应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得30
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
严逍遥应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
7秒前
ceeray23应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
7秒前
然大宝发布了新的文献求助10
7秒前
佳儿完成签到,获得积分10
8秒前
9秒前
Fingerprints完成签到 ,获得积分10
9秒前
10秒前
曹亚伟发布了新的文献求助10
10秒前
10秒前
YAO发布了新的文献求助10
13秒前
chen发布了新的文献求助10
13秒前
bkagyin应助杰bro采纳,获得10
13秒前
1218完成签到 ,获得积分10
16秒前
CC发布了新的文献求助10
16秒前
hongxuezhi完成签到,获得积分10
17秒前
17秒前
wQ1ng应助777采纳,获得10
19秒前
20秒前
clamon完成签到,获得积分10
21秒前
科研通AI5应助雷雷采纳,获得10
21秒前
soss完成签到,获得积分10
22秒前
Ldq发布了新的文献求助10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208961
求助须知:如何正确求助?哪些是违规求助? 4386288
关于积分的说明 13660545
捐赠科研通 4245343
什么是DOI,文献DOI怎么找? 2329238
邀请新用户注册赠送积分活动 1327077
关于科研通互助平台的介绍 1279355