4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation

磁化 3D打印 材料科学 制作 转化(遗传学) 软机器人 纳米技术 计算机科学 执行机构 机械工程 磁场 人工智能 工程类 物理 复合材料 病理 基因 化学 医学 替代医学 量子力学 生物化学
作者
Yuanxi Zhang,Qingyuan Wang,Shengzhu Yi,Zi Lin,Chuanyang Wang,Zhipeng Chen,Lelun Jiang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (3): 4174-4184 被引量:171
标识
DOI:10.1021/acsami.0c19280
摘要

Four-dimensional (4D) printed magnetoactive soft material (MASM) with a three-dimensional (3D) patterned magnetization profile possesses programmable shape transformation and controllable locomotion ability, showing promising applications in actuators and soft robotics. However, typical 4D printing strategies for MASM always introduced a printing magnetic field to orient the magneto-sensitive particles in polymers. Such strategies not only increase the cooperative control complexity of a 3D printer but may also induce local agglomeration of magneto-sensitive particles, which disturbs the magnetization of the already-printed structure. Herein, we proposed a novel 4D printing strategy that coupled the traditional 3D injection printing with the origami-based magnetization technique for easy fabrication of MASM objects with a 3D patterned magnetization profile. The 3D injection printing that can rapidly create complex 3D structures and the origami-based magnetization technique that can generate the spatial magnetization profile are combined for fabrication of 3D MASM objects to yield programmable transformation and controllable locomotion. A physics-based finite element model was also developed for the design guidance of origami-based magnetization and magnetic actuation transformation of MASM. We further demonstrated the diverse functions derived from the complex shape deformation of MASM-based robots, including a bionic human hand that played "rock-paper-scissors" game, a bionic butterfly that swung the wings on the flower, and a bionic turtle that crawled on the land and swam in the water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助大怪物采纳,获得10
1秒前
m13965062353完成签到,获得积分10
1秒前
MM11111完成签到 ,获得积分10
1秒前
1秒前
AllIN发布了新的文献求助10
1秒前
EpQAQ发布了新的文献求助30
1秒前
5Cu关闭了5Cu文献求助
2秒前
董小天天完成签到,获得积分10
3秒前
jingle完成签到 ,获得积分10
3秒前
小菜完成签到 ,获得积分10
4秒前
4秒前
5秒前
知还完成签到,获得积分10
6秒前
6秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
海豚发布了新的文献求助10
11秒前
健忘洋葱完成签到 ,获得积分10
11秒前
大怪物发布了新的文献求助10
12秒前
maybe发布了新的文献求助10
12秒前
13秒前
13秒前
FashionBoy应助陆访文采纳,获得10
13秒前
bkagyin应助与枫采纳,获得10
14秒前
14秒前
丘比特应助听雨眠采纳,获得10
15秒前
16秒前
一二发布了新的文献求助20
16秒前
17秒前
科目三应助轻松雁蓉采纳,获得10
18秒前
SCI完成签到,获得积分10
18秒前
星辰大海应助yangyan采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039