4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation

磁化 3D打印 材料科学 制作 转化(遗传学) 软机器人 纳米技术 计算机科学 执行机构 机械工程 磁场 人工智能 工程类 物理 复合材料 病理 基因 化学 医学 替代医学 量子力学 生物化学
作者
Yuanxi Zhang,Qingyuan Wang,Shengzhu Yi,Zi Lin,Chuanyang Wang,Zhipeng Chen,Lelun Jiang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (3): 4174-4184 被引量:139
标识
DOI:10.1021/acsami.0c19280
摘要

Four-dimensional (4D) printed magnetoactive soft material (MASM) with a three-dimensional (3D) patterned magnetization profile possesses programmable shape transformation and controllable locomotion ability, showing promising applications in actuators and soft robotics. However, typical 4D printing strategies for MASM always introduced a printing magnetic field to orient the magneto-sensitive particles in polymers. Such strategies not only increase the cooperative control complexity of a 3D printer but may also induce local agglomeration of magneto-sensitive particles, which disturbs the magnetization of the already-printed structure. Herein, we proposed a novel 4D printing strategy that coupled the traditional 3D injection printing with the origami-based magnetization technique for easy fabrication of MASM objects with a 3D patterned magnetization profile. The 3D injection printing that can rapidly create complex 3D structures and the origami-based magnetization technique that can generate the spatial magnetization profile are combined for fabrication of 3D MASM objects to yield programmable transformation and controllable locomotion. A physics-based finite element model was also developed for the design guidance of origami-based magnetization and magnetic actuation transformation of MASM. We further demonstrated the diverse functions derived from the complex shape deformation of MASM-based robots, including a bionic human hand that played "rock-paper-scissors" game, a bionic butterfly that swung the wings on the flower, and a bionic turtle that crawled on the land and swam in the water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
1秒前
1秒前
1秒前
stt完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
123发布了新的文献求助10
1秒前
可爱菠萝发布了新的文献求助10
1秒前
汉堡包应助mengtian采纳,获得30
2秒前
2秒前
Tibbar完成签到,获得积分10
3秒前
3秒前
熊霸超人完成签到,获得积分10
3秒前
华仔应助zhangpeng采纳,获得10
3秒前
藏獒完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助john采纳,获得10
4秒前
ZW发布了新的文献求助10
4秒前
星辰大海应助周女士采纳,获得10
4秒前
5秒前
5秒前
JamesPei应助安静的难破采纳,获得30
5秒前
ZJ完成签到,获得积分10
5秒前
果不欺然完成签到,获得积分10
5秒前
5秒前
5秒前
可靠道罡发布了新的文献求助10
5秒前
6秒前
chu完成签到,获得积分10
6秒前
charolte完成签到,获得积分10
6秒前
Franny完成签到 ,获得积分10
7秒前
7秒前
英姑应助忐忑的钢笔采纳,获得10
7秒前
zw完成签到,获得积分20
8秒前
南风发布了新的文献求助10
8秒前
自然的苗条完成签到,获得积分10
8秒前
傅宛白发布了新的文献求助20
8秒前
ZJ发布了新的文献求助10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559156
求助须知:如何正确求助?哪些是违规求助? 3133718
关于积分的说明 9403929
捐赠科研通 2833973
什么是DOI,文献DOI怎么找? 1557731
邀请新用户注册赠送积分活动 727632
科研通“疑难数据库(出版商)”最低求助积分说明 716383