A general fragments allocation method for join query in distributed database

计算机科学 连接(拓扑) 查询优化 数据库 排序合并联接 在线聚合 分布式数据库 哈希联接 加入 情报检索 萨尔盖博 查询计划 查询语言 数据挖掘
作者
Jintao Gao,Wenjie Liu,Zhanhuai Li,Jian Zhang,Li Shen
出处
期刊:Information Sciences [Elsevier BV]
卷期号:512: 1249-1263
标识
DOI:10.1016/j.ins.2019.10.043
摘要

Abstract The quality of fragments allocation is key for improving performance of join query in distributed database. Current strategies concentrate on using heuristic rules to allocate fragments to corresponding locations, such as picking the location with maximum required data or with greedy algorithm. Notwithstanding their benefits, under distributed environment, facing various query plans, different data distributions and expensive network cost, their scene-sensitive character may easily generate low quality allocation plan due to lack of generalization ability. In this paper, for breaking this limitation, we propose a general strategy for allocating fragments(AlCo, Allocate fragments based on Cost). AlCo evaluates multiple candidate allocation plans based on cost, which is realized by a modified genetic algorithm employed from PostgreSQL. Our fitness function (cost model) synthetically considers various changeable factors to support generalization ability. For reducing the risks caused by randomization of genetic algorithm, AlCo provides an upper bound computed through current heuristic methods to improve the robustness of our genetic algorithm. We implement AlCo in a distributed database system, and the experiments show that, on TPC-H benchmark, AlCo is up to 2x–4x better on performance than existing strategies and performs well in robustness and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七丫发布了新的文献求助10
1秒前
Eternity完成签到,获得积分10
2秒前
2秒前
Kvolu29发布了新的文献求助10
2秒前
000发布了新的文献求助10
3秒前
科研鸟发布了新的文献求助10
3秒前
3秒前
晶晶完成签到,获得积分10
3秒前
4秒前
飞飞完成签到,获得积分10
6秒前
苽峰完成签到,获得积分10
6秒前
酷波er应助龙龙采纳,获得10
7秒前
7秒前
kingmantj发布了新的文献求助10
7秒前
8秒前
还不错的橙子完成签到,获得积分10
8秒前
爆米花应助苒ran采纳,获得10
10秒前
10秒前
静默向上发布了新的文献求助10
11秒前
12秒前
12秒前
小凉发布了新的文献求助10
13秒前
14秒前
怕黑的静蕾应助芭娜55采纳,获得10
15秒前
smile发布了新的文献求助30
15秒前
16秒前
怕黑的静蕾应助树袋采纳,获得10
16秒前
风趣小蜜蜂完成签到,获得积分10
16秒前
momo发布了新的文献求助10
17秒前
huiyuan完成签到,获得积分10
18秒前
Orange应助smile采纳,获得30
19秒前
19秒前
七熵完成签到 ,获得积分0
20秒前
20秒前
21秒前
22秒前
GQL发布了新的文献求助10
22秒前
飘逸小懒猪应助hg采纳,获得10
22秒前
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420