The expression of seven key genes can predict distant metastasis of colorectal cancer to the liver or lung

医学 结直肠癌 转移 逻辑回归 接收机工作特性 肺癌 逐步回归 小桶 肿瘤科 内科学 癌症 基因 基因表达 遗传学 基因本体论 生物
作者
Li Tang,Yuan Lei,Yao Jiang Liu,Bo Tang,Shiming Yang
出处
期刊:Journal of Digestive Diseases [Wiley]
卷期号:21 (11): 639-649 被引量:13
标识
DOI:10.1111/1751-2980.12936
摘要

Objective It is unclear how primary colorectal cancer (CRC) cells select to metastasize to the liver or lungs, the most frequent distant metastasis of CRC. We aimed to identify the key genes and pathways that may predict the distant metastasis of CRC to these sites. Methods Three gene expression array datasets from the Gene Expression Omnibus were analyzed. Protein–protein network analyses, best subsets regressions and backward stepwise regression analyses were used to screen the key genes and their expressions were used to construct a predictive logistic regression model. Expression data from local clinical samples were used as a validation dataset. The receiver operating characteristic (ROC) curve was used to test the performance of the predictive model. Results In total, 59 differentially expressed genes (DEG) related to liver‐metastasis, 90 related to lung metastasis and 45 related to both liver and lung metastasis were identified. The KEGG pathways and gene oncology (GO) terms that were enriched in liver and lung metastasis were identified. A predictive logistic regression model consisted of SPARC, COL1A2, MMP9, COL11A1, COL3A1, CXCL12 and THBS2 was established. The area under the ROC curve reached 0.839 in predicting liver and lung metastasis, using our clinical samples as the validation dataset. Conclusions Seven key genes capable of predicting liver and lung metastasis of colorectal cancer were identified, which provides clues for exploring the mechanism of selecting target organs during the metastatic process in CRC and inspires the researches for new potential targets for therapy to inhibit metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔一完成签到 ,获得积分10
刚刚
1秒前
xiazhq完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
Yasong完成签到 ,获得积分10
3秒前
3秒前
4秒前
桐桐应助小熊噗噗采纳,获得10
4秒前
5秒前
5秒前
一二三四完成签到,获得积分10
7秒前
xyn完成签到,获得积分20
7秒前
ziwei发布了新的文献求助100
7秒前
9秒前
9秒前
小天才儿童手表完成签到,获得积分10
9秒前
Zzzjjj123发布了新的文献求助10
9秒前
SciGPT应助笨笨的初露采纳,获得10
9秒前
Luckydan完成签到,获得积分10
9秒前
9秒前
魔幻哈密瓜完成签到,获得积分20
9秒前
亦秋发布了新的文献求助10
9秒前
迷路雨竹发布了新的文献求助10
10秒前
冷酷向薇发布了新的文献求助10
10秒前
zero完成签到,获得积分10
11秒前
善学以致用应助XUXU采纳,获得10
11秒前
科研通AI6应助花开彼岸天采纳,获得10
12秒前
Wuc发布了新的文献求助10
12秒前
连爱琴发布了新的文献求助10
13秒前
KKXF完成签到,获得积分10
14秒前
1h完成签到,获得积分10
15秒前
15秒前
安静的乐松完成签到,获得积分10
15秒前
星辰大海应助冷酷向薇采纳,获得10
16秒前
科研通AI2S应助健康的如松采纳,获得10
17秒前
eric888应助kinglnn采纳,获得100
17秒前
缓慢的破茧完成签到 ,获得积分10
19秒前
阿泽完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061324
求助须知:如何正确求助?哪些是违规求助? 4285381
关于积分的说明 13354449
捐赠科研通 4103206
什么是DOI,文献DOI怎么找? 2246575
邀请新用户注册赠送积分活动 1252246
关于科研通互助平台的介绍 1183114