Brain functional network modeling and analysis based on fMRI: a systematic review

神经科学 精神分裂症(面向对象编程) 脑病 疾病 人脑 认知 计算机科学 静息状态功能磁共振成像 网络分析 功能连接 心理学 医学 精神科 病理 物理 量子力学
作者
Zhongyang Wang,Junchang Xin,Zhiqiong Wang,Yu‐Dong Yao,Yue Zhao,Wei Qian
出处
期刊:Cognitive Neurodynamics [Springer Science+Business Media]
卷期号:15 (3): 389-403 被引量:38
标识
DOI:10.1007/s11571-020-09630-5
摘要

In recent years, the number of patients with neurodegenerative diseases (i.e., Alzheimer’s disease, Parkinson’s disease, mild cognitive impairment) and mental disorders (i.e., depression, anxiety and schizophrenia) have increased dramatically. Researchers have found that complex network analysis can reveal the topology of brain functional networks, such as small-world, scale-free, etc. In the study of brain diseases, it has been found that these topologies have undergoed abnormal changes in different degrees. Therefore, the research of brain functional networks can not only provide a new perspective for understanding the pathological mechanism of neurological and psychiatric diseases, but also provide assistance for the early diagnosis. Focusing on the study of human brain functional networks, this paper reviews the research results in recent years. First, this paper introduces the background of the study of brain functional networks under complex network theory and the important role of topological properties in the study of brain diseases. Second, the paper describes how to construct a brain functional network using neural image data. Third, the common methods of functional network analysis, including network structure analysis and disease classification, are introduced. Fourth, the role of brain functional networks in pathological study, analysis and diagnosis of brain functional diseases is studied. Finally, the paper summarizes the existing studies of brain functional networks and points out the problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WXY完成签到,获得积分10
2秒前
自觉的人龙完成签到,获得积分10
3秒前
3秒前
zhuangxiong发布了新的文献求助10
4秒前
4秒前
4秒前
八斗智狐发布了新的文献求助10
5秒前
5秒前
lpylll发布了新的文献求助10
5秒前
小草发布了新的文献求助10
7秒前
初空月儿完成签到,获得积分10
8秒前
木子发布了新的文献求助10
8秒前
小确幸发布了新的文献求助10
8秒前
9秒前
orixero应助风清扬采纳,获得10
11秒前
香蕉觅云应助眉间一把刀采纳,获得10
12秒前
CodeCraft应助yqt采纳,获得10
12秒前
qxy发布了新的文献求助10
12秒前
优pp完成签到 ,获得积分10
13秒前
14秒前
林一完成签到,获得积分10
14秒前
14秒前
CodeCraft应助小确幸采纳,获得10
15秒前
Akim应助彭彭采纳,获得10
16秒前
tczw667完成签到,获得积分10
16秒前
不会发芽的土豆泥完成签到,获得积分10
18秒前
18秒前
玉ER发布了新的文献求助10
20秒前
刘小文完成签到 ,获得积分10
22秒前
山青完成签到,获得积分10
24秒前
GD88完成签到 ,获得积分10
24秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
善学以致用应助栗子采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得80
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062734
求助须知:如何正确求助?哪些是违规求助? 4286445
关于积分的说明 13357088
捐赠科研通 4104266
什么是DOI,文献DOI怎么找? 2247395
邀请新用户注册赠送积分活动 1252983
关于科研通互助平台的介绍 1183935