Comparison of Canopy Shape and Vegetation Indices of Citrus Trees Derived from UAV Multispectral Images for Characterization of Citrus Greening Disease

天蓬 多光谱图像 牙冠(牙科) 遥感 环境科学 植被(病理学) 绿化 归一化差异植被指数 叶面积指数 林业 植物 生物 生态学 地理 医学 病理 牙科
作者
Anjin Chang,Junho Yeom,Jinha Jung,Juan Landivar
出处
期刊:Remote Sensing [MDPI AG]
卷期号:12 (24): 4122-4122 被引量:27
标识
DOI:10.3390/rs12244122
摘要

Citrus greening is a severe disease significantly affecting citrus production in the United States because the disease is not curable with currently available technologies. For this reason, monitoring citrus disease in orchards is critical to eradicate and replace infected trees before the spread of the disease. In this study, the canopy shape and vegetation indices of infected and healthy orange trees were compared to better understand their significant characteristics using unmanned aerial vehicle (UAV)-based multispectral images. Individual citrus trees were identified using thresholding and morphological filtering. The UAV-based phenotypes of each tree, such as tree height, crown diameter, and canopy volume, were calculated and evaluated with the corresponding ground measurements. The vegetation indices of infected and healthy trees were also compared to investigate their spectral differences. The results showed that correlation coefficients of tree height and crown diameter between the UAV-based and ground measurements were 0.7 and 0.8, respectively. The UAV-based canopy volume was also highly correlated with the ground measurements (R2 > 0.9). Four vegetation indices—normalized difference vegetation index (NDVI), normalized difference RedEdge index (NDRE), modified soil adjusted vegetation index (MSAVI), and chlorophyll index (CI)—were significantly higher in healthy trees than diseased trees. The RedEdge-related vegetation indices showed more capability for citrus disease monitoring. Additionally, the experimental results showed that the UAV-based flush ratio and canopy volume can be valuable indicators to differentiate trees with citrus greening disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的飞珍完成签到,获得积分10
刚刚
Ava应助luuuuuing采纳,获得30
1秒前
高高千筹完成签到,获得积分10
1秒前
Jasper应助哲000采纳,获得10
2秒前
调皮的天真完成签到 ,获得积分10
2秒前
1ssd应助有风采纳,获得10
2秒前
2秒前
奇奇怪怪完成签到,获得积分10
3秒前
TanFT发布了新的文献求助10
3秒前
青鸟飞鱼完成签到,获得积分10
3秒前
吴吴发布了新的文献求助10
4秒前
ShengjuChen完成签到 ,获得积分10
4秒前
4秒前
CipherSage应助标致小伙采纳,获得10
4秒前
科研通AI5应助深爱不疑采纳,获得10
4秒前
艺术家脾气完成签到,获得积分10
5秒前
6秒前
unicornmed发布了新的文献求助10
6秒前
可爱的函函应助茶艺如何采纳,获得10
7秒前
江知之完成签到 ,获得积分0
7秒前
7秒前
9秒前
刻苦问柳发布了新的文献求助10
9秒前
酷酷平卉完成签到 ,获得积分10
9秒前
星辰大海应助吴吴采纳,获得30
9秒前
JTB发布了新的文献求助10
9秒前
BILNQPL发布了新的文献求助10
9秒前
兮遥遥完成签到 ,获得积分10
10秒前
10秒前
10秒前
丰知然应助轩辕德地采纳,获得10
11秒前
12秒前
吨吨喝水关注了科研通微信公众号
12秒前
酷波er应助某只橘猫君采纳,获得10
12秒前
12秒前
stt发布了新的文献求助10
12秒前
12秒前
Ling完成签到,获得积分10
12秒前
TanFT完成签到,获得积分10
13秒前
笙歌自若发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762