化学
蛋白激酶B
PI3K/AKT/mTOR通路
细胞生物学
草酸钙
活力测定
癌症研究
信号转导
MAPK/ERK通路
药理学
生物化学
细胞凋亡
生物
尿
作者
Yadong Liu,Song Chen,Jiannan Liu,Yinshan Jin,Shiliang Yu,Rui-Hua An
出处
期刊:Life Sciences
[Elsevier]
日期:2019-11-28
卷期号:241: 117108-117108
被引量:41
标识
DOI:10.1016/j.lfs.2019.117108
摘要
Telmisartan (TLM), a highly selective angiotensin II type 1 receptor blocker (ARB) and partial PPAR-γ agonist, has versatile beneficial effects against oxidative stress, apoptosis, inflammatory responses and epithelial-mesenchymal transition (EMT). However, its underlying mechanism of inhibiting oxalate and calcium oxalate (CaOx) crystal-induced EMT by activating the PPAR-γ pathway remains unclear. CCK-8 assays were used to evaluate the effects of TLM on cell viability. In addition, intracellular reactive oxygen species (ROS) levels were measured by the cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Wound-healing and Transwell assays were used to evaluate the migration ability of HK2 cells exposed to oxalate. Moreover, immunofluorescence, immunohistochemistry and western blotting were used to examine the expression of E-cadherin, N-cadherin, vimentin and α-SMA and explore the underlying molecular mechanisms in HK2 cells and a stone-forming rat model. Our results showed that TLM treatment could protect HK2 cells from oxalate-induced cytotoxicity and oxidative stress injury. Additionally, TLM prevented EMT induction by oxalate and CaOx crystals via the PPAR-γ-AKT/STAT3/p38 MAPK-Snail pathway in vitro and in vivo. However, knockdown of PPAR-γ with small interfering RNA or the PPAR-γ-specific antagonist GW9662 abrogated these protective effects of TLM. As a PPAR-γ agonist, TLM can ameliorate oxalate and CaOx crystal-induced EMT by exerting an antioxidant effect through the PPAR-γ-AKT/STAT3/p38 MAPK-Snail signaling pathway. Therefore, TLM can block EMT progression and could be a potential therapeutic agent for preventing and treating calcium oxalate urolithiasis formation and recurrence.
科研通智能强力驱动
Strongly Powered by AbleSci AI