有机发光二极管
量子效率
材料科学
紫外线
荧光
光电子学
光化学
量子
纳米技术
光学
化学
量子力学
物理
图层(电子)
作者
Yanju Luo,Shuaibing Li,Yihuan Zhao,Chuan Li,Zhenguo Pang,Yan Huang,Minghui Yang,Liang Zhou,Xujun Zheng,Xuemei Pu,Zhiyun Lu
标识
DOI:10.1002/adma.202001248
摘要
Owing to the difficulty in acquiring compounds with combined high energy bandgaps and lower-lying intramolecular charge-transfer excited states, the development of ultraviolet (UV) thermally activated delayed fluorescence (TADF) materials is quite challenging. Herein, through interlocking of the diphenylsulfone (PS) acceptor unit of a reported deep-blue TADF emitter (CZ-PS) by a dimethylmethylene bridge, CZ-MPS, a UV-emissive TADF compound bearing a shallower LUMO energy level and a more rigid structure than those of CZ-PS is achieved. This represents the first example of a UV-emissive TADF compound. Organic light-emitting diode (OLED) using CZ-MPS as the guest material can emit efficient UV light with emission maximum of 389 nm and maximum total external quantum efficiency (EQEmax ) of 9.3%. Note that this EQEmax value is twice as high as the current record EQEmax (4.6%) for UV-OLEDs. This finding may shed light on the molecular design strategy for high-performance UV-OLED materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI